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ABSTRACT. Canopy access systems that include cable-supported walkway bridges are being built around 
the world to study forest canopy ecosystems. The "canopy walkways" considered here require less physical 
effort on the part of researchers than do rope climbing techniques. Such systems also facilitate collaboration 
between several researchers moving laterally through the canopy. The physics of building hanging struc­
tures, such as canopy bridges, needs to be understood and utilized to design a safe, long-lasting structure. 
An interactive computer program was developed that employs catenary curve equations and nested root 
extraction algorithms to calculate construction parameters. The use of this program has accelerated the 
design of several structures built in the canopy of both temperate and tropical forests. 
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INTRODUCTION 

Research in the canopies of forests (Lowman 
& Wittman 1996) has been limited by the logis­
tical constraints of safe and easy access (re­
viewed in Mitchell 1982, Moffet & Lowman 
1995). Of the many methods used to gain access 
to the heights, only a few allow several people 
to be in close proximity or in the canopy for 
long time periods. Observation platforms and 
canopy bridges are used to overcome these lim­
itations, but the design and costs of many such 
structures often exceed research budgets. Com­
pared to suspension bridges, the canopy bridges 
discussed here are lighter, easier to construct and 
install, and can be placed higher in the canopy. 
Shortening the design phase while maintaining 
safety standards may reduce the cost. 

WALKWAY SYSTEMS 

A canopy walkway system typically incorpo­
rates some combination of platform(s), bridg­
es(s), and a means of access (Lowman & Bour­
icius 1995). A canopy bridge as discussed here 
consists of an overhead safety cable, two hand-

* Corresponding author. 

rail cables, and a treadway (FIGURE 1). The 
treadway consists of two strong and flexible sup­
porting cables with slender traversing treads, 
separated by spacers, distributed along their en­
tire lengths. The ends of each cable are attached 
to large trees that are stabilized with guy cables. 
The treadway hangs freely and assumes a spe­
cial shape called a catenary. In 1691, Johann 
Bemouilli used principles of physics to describe 
the exact shape formed by a chain suspended 
between two points (Dunham 1990). Any such 
freely hanging entity, if it is perfectly flexible 
and has uniform weight per unit length, will as­
sume a catenary shape. The treadways described 
here weigh very nearly a constant amount per 
unit length, the treads are numerous, and the ca­
bles are quite flexible. Deviations from a cate­
nary shape, therefore, are quite small. Conse­
quently, mathematical modeling is both feasible 
and trustworthy (USSC 1959). 

Design Considerations 

To design and construct a walkway, one must 
know the attributes of all the materials used, 
such as the tensile strength of the cables and the 
weights of all component parts. The treadway 
safety factor is defined as the minimum breaking 
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FIGURE 1. Photograph of walkway during construction at The EcoTarium, Worcester, MA. 

strength of the supporting cables divided by the 
cable tension when the load equals its maximum 
allowed value. For our treadways, we prescribe 
safety factors of 5 or higher (WRTB 1993). To 
achieve a prescribed safety factor, the tension on 
the cables must either be measured or calculated. 
Because measuring cable tension during con­
struction would be costly, time-consuming, and 
impractical, it is preferable to calculate the ten­
sions. To permit easy negotiation, the slope of 
the treadway should not be too large. To accom­
plish this, we prescribe an upper limit of 25° for 
the angle from the horizontal, at any place on 
our treadways. In considering a first choice for 
supporting cables, a designer may find calcula­
tions revealing that the required safety factor 
cannot be met, or that the angles at the ends of 
the treadway would become too large. If so, then 
higher tensile-strength support cables must be 
used. This means heavier, thicker, and more ex­
pensive cables. A reevaluation of every part of 
the whole walkway system must then be made 
to assess the effects of using stronger cables. 
Different choices for eyebolts, guy cables, or 
even trees might be necessary. 

This design process takes into account ergo­
nomic and economic factors in addition to the 
dimensional ones. Design specifications are con­
sidered and resolved prior to ordering the struc­
tural components. This minimizes the need for 

field modifications. With the final specifications 
determined, the necessary materials are pur­
chased and transported to the site. Then the ac­
tual construction of the canopy access system 
begins. 

Construction Considerations 

To specify a particular treadway catenary re­
quires two parameters, one of which is the hor­
izontal distance between the two ends, defined 
as the span. The other parameter may be the 
length along the catenary, the angle at the ends, 
or the sag. Specifying anyone of them deter­
mines the curvature coefficient, A. The others 
are then easily calculated. The angle at the at­
tachment point is extremely difficult to measure 
accurately, as is the length along the treadway 
catenary. For a 50-foot span with an initial sag 
of 3 feet, an error of 1 inch in the measured sag 
is equivalent to a 0.37° error in the angle or to 
a 0.027-ft error in the measured catenary length 
(TABLE 1). The most feasible way to assure dur­
ing construction that a treadway meets its design 
specifications is to measure the sag. A line of 
sight method using a portable laser level works 
well. Repeated measurements on a treadway 
having a 50-foot span vary by less than an inch. 
The sag is changed during construction by vary­
ing the length of the support cables. This is ac-
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TABLE 1. Calculated values for a level 50-foot span 
treadway, weighing 8.9 pounds-per-foot and sup-
ported by two W' stainless steel cables. Each cable 
has a minimum-breaking-strength of 12,000 
pounds. 

Tension 
Sag (ft) Curvature Angle (lbs) Safety Catenary 
(stage I) A e per cable factor lengtb (ft) 

1.00 312.7 4.58° 1396 8.60 50.053 
1.25 250.3 5.72° 1119 10.72 50.083 
1.50 208.6 6.85° 935 12.83 50.120 
1.75 178.9 7.98° 803 14.93 50.163 
2.00 156.7 9.lr 705 17.00 50.213 
2.25 139.3 10.23° 630 19.05 50.269 
2.50 125.4 11.35° 569 21.07 50.332 
2.75 114.1 12.46° 520 23.07 50.401 
3.00 104.7 13.56° 479 25.04 50.477 
3.25 96.7 14.65° 445 26.97 50.559 
3.50 89.9 15.74° 416 28.87 50.647 
3.75 84.0 16.82° 390 30.73 50.742 
4.00 78.8 17.88° 368 32.56 50.843 

complished by adjusting the cables through the 
cable clamps and eye bolts at one end of the 
treadway. This procedure is repeated until the 
measured sag attains its prescribed design value. 

CATENARY EQUATIONS 

We first consider a mathematical catenary and 
then progress to a physical treadway, one that 
has a catenary shape but also has a known con­
stant weight per foot. We categorize a catenary 
or treadway to be "level" when the two ends 
are in the same horizontal plane (FIGURES 2, 3) 
and "inclined" (FIGURE 4) when they are not. 
Specific values of the Span, Sag, and Incline are 
required to calculate the value of the "curva­
ture" coefficient, A, for a catenary. 

These are the hyperbolic equations of a cate­
nary (Anton 1984): 

y(x) = A·cosh(xIA) (1) 

Tangent Sex) = dyldx = sinh(xIA) (2) 

L(x) = S· sinh(xIA) (3) 

Equation.l is the fundamental equation of a 
catenary. In equation 2, tangent Sex) is the slope 
of the catenary, and Sex) is the angle from the 
horizontal, at x. In equation 3, L(x) is the arc 
length along the catenary from the x = 0 point 
to point x (see ApPENDIX). 

A real physical catenary, as opposed to a 
mathematical one, possesses weight. This weight 
creates a tension, T(x), in the supporting cables 
of the treadway. By taking into consideration the 
static equilibrium status of such a catenary and 

its assumed perfect flexibility and uniformity, 
the following three properties can be deduced: 

1. The vertical component of T(x) is always 
equal to the summed weight of the catenary 
from the x = 0 point to point x. 

2. The horizontal component of T(x), however, 
remains constant throughout. 

3. The ratio of the vertical to the horizontal 
component at any point is equal to the tan­
gent at that point. 
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A = Curvature constant 
H = Horizontal component 
V = Vertical component 
9 = Angle of attachment 

FIGURE 2. A level symmetrical treadway with its var­
ious parts labeled. 
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FIGURE 3. A level symmetrical treadway with a load 
placed at its center. The equations pertinent to this sit­
uation must include an x displacement of D as shown 
here. 
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A = Curvature constant 
H = Horizontal component 
V = Vertical component 
E = Mathematical extension 
o = Displacement 

FIGURE 4. A treadway that is inclined and has a load 
placed on it at some arbitrary horizontal position, SL. 

In the following derivations, V denotes the 
vertical component and H, the horizontal com­
ponent of the tension T. W denotes the weight 
per unit length. Making use of equations 2 and 
3, and the three properties of real catenaries, we 
derive equations 4, 5, and 6: 
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TABLE 2. Calculated values for a level 50-foot span treadway, weighing 8.9 pounds-per-foot and holding a 
1000-pound load. The treadway is supported by two ¥S" stainless steel cables, each with a minimum-
breaking-strength of 12,000 pounds. 

Sag (ft) Dip (ft) Curvature Angle Tension (lbs) Safety Catenary 
(stage 1) (stage 2) A 6 per cable factor length (ft) 

1.00 1.15 1495.6 3.11° 6665 1.80 50.053 
1.25 1.44 1196.6 3.88° 5337 2.25 50.083 
1.50 1.72 997.4 4.66° 4453 2.70 50.120 
1.75 2.01 855.1 5.43° 3822 3.14 50.163 
2.00 2.30 748.4 6.20° 3350 3.58 50.213 
2.25 2.58 665.4 6.97° 2983 4.02 50.269 
2.50 2.87 599.1 7.73° 2690 4.46 50.332 
2.75 3.16 544.8 8.50° 2451 4.90 50.401 
3.00 3.44 499.6 9.26° 2253 5.33 50.477 
3.25 3.73 461.4 10.06° 2085 5.76 50.559 
3.50 4.01 428.6 10.78° 1942 6.18 50.647 
3.75 4.30 400.2 11.52° 1818 6.60 50.742 
4.00 4.58 375.4 12.26° 1710 7.02 50.843 

Vex) = W-L(x) = W·A·sinh(xIA) 

H(x) = V(x)/tangent !lex) 

= W·A·sinh(xIA)/sinh(xIA) = W·A 

T(X)2 = V(X)2 + H(x)2 

= W2.A2'[1 + sinh2(xIA)] 

(4) 

(5) 

= W2·A2·cosh2(xIA) 

T(x) = W·A·cosh(xIA) 

(see APPENDIX) 

(6) 

TREADWAY CALCULATIONS 

The three treadways that we next consider in­
volve increasingly complex examples. They 
show how catenary equations and component 
properties are used to calculate treadway attri­
butes. The ability to do these calculations rap­
idly facilitates the design and subsequent mate­
rials selection of our freely hanging treadways. 

Symmetrical Loadless Treadway 

A level symmetrical treadway with its various 
parts labeled is shown in FIGURE 2. As is readily 
seen, S is half the span, L is half the length, and 
the value of y at x = zero is A. Using equations 
3, 4, 5, and 6, we obtain the following by sub­
stitution: 

Length = 2·L = 2·A·sinh(SIA) 

Sag = A'cosh(SIA) - A 

YeS) = W·A·sinh(SIA) 

H= W-A 

T(S) = W·A·cosh(SIA) 

These equations were employed to calculate 
the values in TABLE 1. 

Symmetrical Loaded Treadway 

Now consider what happens when a load is 
placed on the center of a level symmetrical 
treadway (FIGURE 3). This position is the "worst 
case" position that maximizes the tension on the 
supporting cables. The middle of the treadway 
naturally sinks, but the values of S and L do not 
change, and the left-right symmetry still holds. 
The treadway shown consists of two real parts, 
each labeled L, and two abstract mathematical 
extensions, each labeled E. The length of E de­
pends directly on the weight of the load. If, for 
example, the weight of the load is equal to the 
weight of the original treadway, then E has the 
same length as L. This follows from the property 
noted pertaining to the vertical component of the 
tension. The equations relevant to FIGURE 3 must 
include an x displacement, D, as shown here: 

2·E = 10ad/W 

E = A·sinh(DIA) 

L = A· sinh[(S + D)/A] - E 

Tangent(!l) = sinh[(S + D)/AJ 

Dip = A·cosh[(S + D)/A] 

- A·cosh(DIA) 

T(S + D) = A'cosh[(S + D)/AJ 

This tension, T(S + D), at the attachment point 
is the one used to calculate the safety factor. 

These equations were employed to calculate 
the values in TABLE 2. 



BOURICIOUS ET AL.: CANOPY WALKWAY DESIGN 135 

Asymmetrical Loaded Treadway 

The most complex example is a treadway that 
has an incline (FIGURE 4) and has a load placed 
on it at the horizontal position, SL that maximiz­
es the cable tensions. Although each side has its 
own parameters, the curvature coefficient, A, is 
the same for both sides. This is proved by equat­
ing the horizontal component of the tension on 
the left side, to that on the right. We know that 
this is a true relationship because a real catenary 
always adopts a static equilibrium shape. From 
equation 5, we have W-A L = W·AR • Since the W 
on the left side is the same W as that on the 
right, a cancellation proves the two A's equal. 
The equations pertinent to FIGURE 4 are the fol­
lowing: 

EL + ER = 10adlW 

EL = A· sinh(DLIA) 

ER = A-sinh(DRIA) 

LL = A· sinh[(SL + DL)IA] - EL 

DipL = A·cosh[(SL + DL)IA] 

- A·cosh(D[/A) 

DiPR = A ·cosh[(SR + DR)IA] 

- A-cosh(DRIA) 

T,(SL + D L) = A· cosh[(SL + DL)/A] 

TRCSR + DR) = A· cosh[(SR + DR)/A] 

The two tensions differ, and the larger is the 
one used to calculate the safety factor. The 
"worst case" load position, although not obvi­
ous, is easily found. 

It is apparent, in both TABLE 1 and TABLE 2, 
that a small decrease in the treadway length cor­
relates with an increasingly large increase in the 
cable tensions as the length shrinks. If the two 
trees supporting the treadway sway, the span 
could increase. That motion could cause signif­
icant increases in the tensions. The canopy walk­
ways discussed here constrain movements of the 
supporting trees. Guy cables stabilize both trees, 
and five cables, which connect the two trees, 
tend to synchronize their movements. No dele­
terious incidents due to tree motions have ever 
occurred in our canopy walkways. 

MODELING SCENARIO 

The mathematical modeling is performed in 
two stages. Calculations for a loadless treadway, 
like that of FIGURE 2, are performed during the 

first stage. For a given span and sag, the value 
of the resulting catenary length is determined. 
The length so calculated remains invariant dur­
ing the second stage. The second stage calcu­
lates the effect of placing a specified load on the 
treadway. The load is placed at the position that 
maximizes the tension on the supporting cables. 
That tension, divided into the minimum break­
ing strength of the cables, yields the safety fac­
tor. These two stages are repeated with different 
values for the sag until the required safety factor 
is achieved. That particular sag value is the one 
that must be attained during the actual construc­
tion of the treadway. 

An interactive program (Halvorson & Ryg­
myr 1991) was written that requires the follow­
ing input parameters to be specified, as the pro­
gram pauses and asks for each one by name: 

Span - Horizontal distance between 
attachment points. 

Sag Vertical treadway displacement 
while loadless. 

Incline 

W 
MBS 

Load 

Vertical distance between attach­
ment points. Defaults to zero. 
Treadway weight per foot. 
Minimum breaking strength of a 
single support cable. 
Total weight of people and equip­
ment allowed on the bridge. 
Horizontal position of the load 
along the span. These two param-
eters are only required for asym­
metric treadways. 

For convenience and comparison purposes, 
the following two items also are requested; con­
venient default values are available: 

File Name-Stores inputs and resulting cal­
culated values on the hard drive. 

Precision-Prescribes number of significant 
digits in the calculations. Defaults to five. 

The program calculates values for the tread­
way length, the dip, the cable tension at the at­
tachment points, and the resultant safety factor. 
These values are displayed on the computer 
screen. Additional parameters are calculated to 
confirm the operation of the proper root extrac­
tions and to indicate that the program is func­
tioning correctly. Text files of' all input param­
eters and output values are automatically created 
and stored for later review and printing. 

A loadless level treadway (FIGURE 2) requires 
a first estimate for A, the curvature coefficient. 
The program then finds the value of A corre­
sponding to the input value of the sag. The pro­
gram contains a root extraction subroutine that 
employs Newton's method (Arfken 1985) to lo­
cate that root. 
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For a level tread way carrying a load (FIGURE 
3), the program first calculates the length of the 
loadless catenary. Then it employs two nested 
root extraction subroutines, one nested within 
the other, to find A and D, such that the product 
of E and W equals half the load. 

When the treadway is inclined, or when the 
load is not placed on the center of a level tread­
way, an asymmetry occurs as depicted in FIGURE 
4. For such circumstances, the program employs 
three nested root extracting subroutines that find 
A, DLo and DR' The program then proceeds to 
calculate the rest of the output parameters. 

All root extraction algorithms require a first 
estimate of their root values. That value is then 
stepwise modified until it meets a specified pre­
cision. Newton's root extraction method requires 
a value of the tangent of the root equation at 
every step of the iteration. Calculations employ­
ing a !1 Y /!1X approximation for the tangent 
sometimes created divide-by-zero or out-of­
bound computer errors that restricted the pro­
gram's functioning. Eventually a way was found 
to formulate all of the root equations in ways 
that were analytically differentiable. The first de­
rivative of the root equations, which are the tan­
gents, then became available. These formula­
tions proved more robust. The program accepts 
a wide range of input values, limited only by the 
practical values of treadway weight and cable 
strength. 

CONCLUSION 

Use of catenary curve equations and nested 
root extraction algorithms allows designers to 
calculate the requisite parameters for construc­
tion of cable-supported bridges. The program 
accepts a wide range of treadway parameter in­
puts. A result is executed in less than a minute 
on a computer having a clock rate of 100 MHz. 
Treadways with a large incline take significantly 
longer to calculate. This is because the required 
number of iterations in the root extractions in­
creases substantially. Entry of several variations 
on spans, loads, and tread way weight allows cre­
ation of lookup tables (e.g., TABLE 1) for field 
use when a notebook computer is not available. 

These calculations have been used to design 
and construct canopy access systems around the 
world, ranging from temperate to tropical for­
ests. As canopy research expands and matures, 
the need for such safe and easy access will only 

increase. An ever-growing list of such facilities 
can be found at http://www.canopyaccess.coml. 
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ApPENDIX 

The following equations were used in the 
mathematical derivations: 

cosh(z) 

sinh(z) 

(e Z + e-z)/2 

(e z - e-z)/2 

+ sinh2(z) = cosh2(z) 

The derivative with respect to z of cosh (z) is 
sinh (z). The arc length, L(x) , of the catenary 
from zero to x in equation 3 comes from a 
straightforward line integration of (dx2 + dy2)'h. 


