Calling Doctor Google? Technology Adoption and Health Information Seeking among Low-income African-American Older Adults




underserved population, African-American older adults, technology adoption, health


We conducted focus groups with low-income African American older adults in Kansas City, MO, to examine how this underserved group adopts and uses technology and how technology adoption/use is associated with health information seeking behavior. Low-income African American older adults have been shown to lag behind in terms of their technology access and use. Our findings show that although low-income African American older adults perceive technology to be highly useful, they do not view it as easy to use, thus preventing them from further adopting or using relevant technologies. Consequently, there is skepticism with respect to using technology to search for health information. Our study advances research on underserved groups’ technology use and health information seeking by looking at the intersectionality of race/ethnicity, age, and income. 


Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. doi:10.1016/0749-5978(91)90020-T

Ajzen, I. (2012). The theory of planned behavior. In P. A. M. van Lange, A. W. Kruglanski, & E. T. Higgins (Eds.), Handbook of theories of social psychology (pp. 438-459). Thousand Oaks, CA: Sage.

Ancu, M. (2012). Older adults on Facebook: A survey examination of motives and use of social networking by people 50 and older. Florida Communications Journal, 40(2), 1-12.

Anders, M., & Perrin, A. (2016). 13% of Americans don’t use the internet. Who are they? Retrieved from Pew Research Center website:

Anderson, M. (2015). Technology device ownership: 2015. Retrieved from Pew Research Center website:

Anderson, M., & Perrin, A. (2017). Tech adoption climbs among older adults. Retrieved from Pew Research Center website:

Atkin, D. J., Hunt, D. S., & Lin, C. A. (2015). Diffusion theory in the new media environment: Toward an integrated technology adoption model. Mass Communication and Society, 18(5), 623-650. doi:10.1080/15205436.2015.1066014

Baker, C. (2013). A connection for all ages: Enabling the benefits of high-speed Internet access for older adults. AARP Public Policy Institute, 79, 18.

Barbour, R. (2008). Doing focus groups. Thousand Oaks, CA: Sage Publications Ltd.

Barker, V. (2012). A generational comparison of social networking site use: The influence of age and social identity. The International Journal of Aging and Human Development, 74(2), 163-187. doi:10.2190/AG.74.2.d

Canton, S. (2017). A year of free high-speed internet in Kansas City public housing. The Kansas City Star. Retrieved from

Charmaz, K. (2014). Constructing grounded theory. Thousand Oaks, CA: Sage Publications Ltd.

Creswell, J. W. (2013). Qualitative inquiry & research design: Choosing among five approaches. Thousand Oaks, CA: Sage Publications Ltd.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319. doi:10.2307/249008.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models: Management Science, 35(8), 982-1003. doi:10.1287/mnsc.35.8.982

Emerson, A. R., Fretz, R.I., & Shaw, L. L. (1995). Writing ethnographic notes. Chicago, IL: University of Chicago Press.

Fry, R. (2016). Millennials overtake baby boomers as America’s largest generation: Pew Research Center.

Fusch, P. I., & Ness, L. R. (2015). Are we there yet? Data saturation in qualitative research. The Qualitative Report, 20(9), 1408-1416.

Geana, M. V., & Greiner, K. A. (2011). Health information and the digital divide. Journal of Management & Marketing in Healthcare, 4(2), 108-112. doi:10.1179/175330311X12943314049538

Geana, M. V., Greiner, K. A., Cully, A., Talawyma, M., & Daley, C. M. (2012). Improving health promotion to American Indians in the Midwest United States: Preferred sources of health information and its use for the medical encounter. Journal of Community Health, 37(6), 1253-1263.

doi: 10.1007/s10900-012-9564-x

Geanna, M. V., Kimminau, K. S., & Greiner, K. A. (2011). Sources of health information in a multiethnic, underserved, urban community: Does ethnicity matter? Journal of Health Communication, 16(6), 583-594. doi: 10.1080/10810730.2011.551992

Godin, G., & Kok, G. (1996). The Theory of Planned Behavior: A review of its applications to health-related behaviors. American Journal of Health Promotion, 11(2), 87-98. doi:10.4278/0890-1171-11.2.87

Goldberg, R. (2016). Lack of trust in internet privacy and security may deter economic and other online activities. Retrieved from National Telecommunications and Information Administration, United States Department of Commerce website:

Gallop, C. J. (1997). Health information-seeking behavior and older African American women. Bulletin of the Medical Library Association, 85(2), 141-146.

Greenwood, S., Perrin, A., & Duggan, M. (2016). Social media update 2016. Retrieved from Pew Research Center website:

Hargittai, E., & Hinnant, A. (2008). Digital inequality: Differences in young adults' use of the Internet. Communication Research, 35(5), 602-621. doi:10.1177/0093650208321782

Hargittai, E., & Hsieh, Y. (2013). Digital inequality. The Oxford handbook of Internet studies. Oxford, UK: Oxford University Press. doi: 10.1093/oxfordhb/9780199589074.013.0007

Haughton, L. T. (2005). Digital divide and stability of access in African American women visiting urban public health centers. Journal of Health Care for the Poor and Underserved, 16(2), 362-374. doi: 10.1353/hpu.2005.0034

Helsper, E. J. (2016). The social relativity of digital exclusion: Applying relative deprivation theory to digital inequalities. Communication Theory 27(3), 223-242. doi: 10.1111/comt.12110

Hesse, B. W., Nelson, D. E., Kreps, G. L., Croyle, R. T., Arora, N. K., Rimer, B. K., & Viswanath, K. (2005). Trust and sources of health information: The impact of the Internet and its implications for health care providers: Findings from the first health information national trends survey. Archives of Internal Medicine, 165(22), 2618-2624. doi:10.1001/archinte.165.22.2618

Holt, C. L. (2017). Health ministry and activities in African American faith-based organizations: A qualitative examination of facilitators, barriers, and use of technology. Journal of Health Care for the Poor and Underserved, 28(1), 378-388. doi:10.1353/hpu.2017.0029

Horrigan, J. B. (2016). Digital readiness gaps. Retrieved from Pew Research Center website:

Horrigan, J. B., & Duggan, M. (2015). Home broadband 2015. Retrieved from Pew Research Center website:

Jaeger, P. T., Bertot, J. C., Thompson, K. M., Katz, S. M., & DeCoster, E. J. (2012). The intersection of public policy and public access: Digital divides, digital literacy, digital inclusion, and public libraries. Public Library Quarterly, 31(1), 1-20. doi:10.1080/01616846.2012.654728

Kansas City Mayor’s Bi-State Innovation Team (2012). The state of internet connectivity in KC: Neighborhood-based research findings (Google Propriety Presentation). Retrieved from

Kim, H., & Xie, B. (2017). Health literacy in the eHealth era: A systematic review of the literature. Patient Education and Counseling, 100(6), 1073-1082. doi:10.1016/j.pec.2017.01.015

Kontos, E. Z., Emmons, K. M., Puleo, E., & Viswanath, K. (2010). Communication inequalities and public health implications of adult social networking site use in the United States. Journal of Health Communication, 15(Suppl.3), 216-235. doi:10.1080/10810730.2010.522689

Krishnan, A., & Hunt, D. S. (2015). Influence of a multidimensional measure of attitudes on motives to use social networking sites. Cyberpsychology, Behavior, and Social Networking, 18(3), 165-172. doi:10.1089/cyber.2014.0423

Krueger, R. A., & Casey, M. A. (2009). Focus groups: A practical guide for applied research. Thousand Oaks, CA: Sage Publications Ltd.

Lumpkins, C. Y., Mabachi, N., Lee, J., Pacheco, C., Greiner, K. A., & Geana, M. (2017). A prescription for internet access: Appealing to middle-aged and older racial and ethnic minorities through social network sites to combat colorectal cancer. Health Communication, 7, 1-5. doi:10.1080/10410236.2016.1195679

Luo, M. M., Chea, S., & Chen, J.-S. (2011). Web-based information service adoption: A comparison of the motivational model and the uses and gratifications theory. Decision Support Systems, 51(1), 21-30. doi:10.1016/j.dss.2010.11.015

Luo, M. M., & Remus, W. (2014). Uses and gratifications and acceptance of web-based information services: An integrated model. Computers in Human Behavior, 38, 281-295. doi:10.1016/j.chb.2014.05.042

Manganello, J., Gerstner, G., Pergolino, K., Graham, Y., Falisi, A., & Strogatz, D. (2017). The relationship of health literacy with use of digital technology for health information: Implications for public health practice. Journal of Public Health Management and Practice, 23(4), 380-387.

doi: 10.1097/PHH.0000000000000366

Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191.


Matthews, A. K., Sellergren, S. A., Manfredi, C., & Williams, M. (2002). Factors influencing medical information seeking among African American cancer patients. Journal of Health Communication, 7(3), 205-219. doi:10.1080/10810730290088094

Mattis, J. S. (2002). Religion and spirituality in the meaning–making and coping experiences of African American women: A qualitative analysis. Psychology of Women Quarterly, 26(4), 309-321. doi: 10.1111/1471-6402.t01-2-00070

Mehra, B., Merkel, C., & Bishop, A. P. (2004). The internet for empowerment of minority and marginalized users. New Media & Society, 6(6), 781-802. doi:10.1177/146144804047513

Mossberger, K. (2006). Race, place, and information technology. Urban Affairs Review, 41(5), 583-620. doi: 10.1177/1078087405283511

Patton, M. Q. (2002). Qualitative research & evaluation methods. London, UK: Sage Publications.

Perrin, A. (2015). Social media usage: 2005-2015. Retrieved from Pew Research Center website:

Perrin, A., & Duggan, M. (2015). Americans’ internet access: 2000-2015. Retrieved from Pew Research Center website:

Quan-Haase, A., & Young, A. L. (2010). Uses and gratifications of social media: A comparison of Facebook and instant messaging. Bulletin of Science, Technology & Society, 30(5), 350-361. doi:10.1177/0270467610380009

Raacke, J., & Bonds-Raacke, J. (2008). MySpace and Facebook: Applying the uses and gratifications theory to exploring friend-networking sites. CyberPsychology & Behavior, 11(2), 169-174. doi:10.1089/cpb.2007.0056

Raine, L. (2016). Digital divides 2016 in a PowerPoint presentation [PowerPoint slides]. Retrieved from

Rhinesmith, C. (2015). Digital inclusion and meaningful broadband adoption initatives. Evanston, IL: Benton Foundation.

Ruggiero, T. (2000). Uses and gratification theory in the 21st century. Mass Communication & Society, 3(1), 3-37.

doi: 10.1207/S15327825MCS0301_02

Seo, H., Houston, J. B., Knight, L. T., Kennedy, E., & Inglish, A. (2014). Teens' social media use and collective action. New Media & Society, 16(6), 883-902. doi:10.1177/1461444813495162

Seo, H. & Thorson, S. (2016). A mixture model of global Internet capacity distributions. Journal of the Association for Information Science and Technology, 67(8), 2032-2044. doi:10.1002/asi.23523

Smith, A. (2014). African Americans and Technology Use. Retrieved from

Sundar, S. S., Jia, H., Waddell, T. F., & Huang, Y. (2015). Toward a theory of interactive media effects: Four models for explaining how interface features affect user psychology. In S. S. Sundar (Ed.), Handbook of psychology of communication technology (pp. 47-86). Malden, MA: Wiley Blackwell.

Tieu, L., Schillinger, D., Sarkar, U., Hoskote, M., Hahn, K. J., Ratanawongsa, N., Lyles, C. R. (2017). Online patient websites for electronic health record access among vulnerable populations: Portals to nowhere? Journal of the American Medical Informatics Association, 24(e1), e47-e54. doi:10.1093/jamia/ocw098

van Deursen, A. J. A. M., Helsper, E. J. & Eynon, R. (2014). Measuring digital skills. From Digital Skills to Tangible Outcomes project report. Retrieved from

Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. doi:10.1287/isre.11.4.342.11872

Viswanath, K., & Ackerson, L. K. (2011). Race, ethnicity, language, social class, and health communication inequalities: A nationally-representative cross-sectional study. PLOS ONE, 6(1), e14550.


Weaver III, J. B., Mays, D., Weaver, S. S., Hopkins, G. L., Eroğlu, D., & Bernhardt, J. M. (2010). Health information–seeking behaviors, health indicators, and health risks. American Journal of Public Health, 100(8), 1520-1525. doi:10.2105/AJPH.2009.180521

Whiting, A., & Williams, D. (2013). Why people use social media: A uses and gratifications approach. Qualitative Market Research: An International Journal, 16(4), 362-369. doi:10.1108/QMR-06-2013-0041

Wilson, K. R., Wallin, J. S., & Reiser, C. (2003). Social stratification and the digital divide. Social Science Computer Review, 21(2), 133-143. doi:10.1177/0894439303021002001

Winbush, G. B. (2014). Health empowerment technologies (HET): Building a web-based tool to empower older African American patient-doctor relationships. Journal of Health Care for the Poor and Underserved, 24(4a), 106-117. doi:10.1353/hpu.2014.0017

Xie, B., Watkins, I., Golbeck, J., & Huang, M. (2012). Understanding and changing older adults' perceptions and learning of social media. Educational Gerontology, 38(4), 282-296.

doi: 10.1080/03601277.2010.544580


Additional Files





Original Research