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Classification of Rotylenchulus reniformis Numbers in Cotton Using
Remotely Sensed Hyperspectral Data on Self-Organizing Maps
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3

Abstract: Rotylenchulus reniformis is one of the major nematode pests capable of reducing cotton yields by more than 60%, causing
estimated losses that may exceed millions of dollars U.S. Therefore, early detection of nematode numbers is necessary to reduce
these losses. This study investigates the feasibility of using remotely sensed hyperspectral data (reflectances) of cotton plants affected
with different nematode population numbers with self-organizing maps (SOM) in correlating and classifying nematode population
numbers extant in a plant’s rhizosphere. The hyperspectral reflectances were classified into three classes based on R. renifomis
population numbers present in plant’s rhizosphere. Hyperspectral data (350-2500 nm) were also sub-divided into Visible, Red Edge +
Near Infrared (NIR) and Mid-IR region to determine the sub-region most effective in spectrally classifying the nematode population
numbers. Various combinations of different feature extraction and dimensionality reduction methods were applied in different
regions to extract reduced sets of features. These features were then classified using a supervised-SOM classification method. Our
results suggest that the overall classification accuracies, in general, for most methods in most regions (except visible region) varied
from 60% to 80%, thereby, indicating a positive correlation between the nematode numbers present in plant’s rhizosphere and the
corresponding plant’s hyperspectral signatures. Results showed that classification accuracies in the Mid-IR region were comparable
to the accuracies obtained in other sub-regions. Finally, based on our findings, the use of remotely-sensed hyperspectral data with
SOM could prove to be extremely time efficient in detecting nematode numbers present in the soil.
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Rotylenchulus reniformis (Linford and Oliveira, 1940) is
a plant-parasitic nematode widely found in sub-tropical
and tropical regions around the world. It is a sub-tropical
semiendoparasitic species in which vermiform females of
R. reniformis penetrate into the roots of the host plant,
altering the flow of nutrients and moisture uptake ca-
pacity of the host plants and severely affecting their
growth (Blasingame et al., 2002; Lawrence et al., 2006,
2007). The above-ground effects on the host plant vary
depending upon the type of host and the number of
nematodes affecting it. One of the hosts severely affected
by R. reniformis is cotton (Gossypium hirsutum). Rotylen-
chulus reniformis can reduce cotton yields by more than
60%, with annual losses running in millions of dollars
(Kelley, 2003; Lawrence et al., 2004, 2006). In 2006, the
estimated revenue loss in the US caused by R. reniformis
nematode was greater than $252 million (Blasingame,
2007). Hence it is necessary to not only identify the
presence of the nematode in the soil but also to de-
termine its numbers. Early and proper identification of
nematode numbers is necessary to initiate nematode
management programs (Kelley, 2003; Lawrence et al.,
2004). The current method for the identification of R.
reniformis is to count nematode numbers after extraction
from soil. This requires that cotton producers collect soil
samples and send them to a laboratory for analysis. This
is a time-consuming and an inefficient process. In this

study, the authors make use of the above-ground effects
on the cotton plant caused by different R. reniformis
numbers to investigate correlations between nematode
numbers and effects on cotton. These above-ground ef-
fects were recorded using remote sensing technology.

Remote sensing is a method of observing and acquir-
ing information about the target’s properties without
physically coming in contact with the target (King, 2004).
Many advanced remote sensing instruments (e.g., Analytical
Spectral Devices (ASD) Fieldspec Pro handheld spec-
troradiometer) collect large amounts of spectral data
distributed over a wide range of bands (wavelengths)
of the electromagnetic (EM) spectrum. The hyperspectral
data are collected over a range from 350-2500 nm and
represent hundreds of discrete measurements of a target’s
reflected energy as a function of wavelength. (Lillesand
et al., 2000; Kelley, 2003). Reflectance is a derived, di-
mensionless quantity and is defined as the ratio of the
radiance reflected from the target under study to the
radiance reflected by an ideal Lambertian surface in
the same direction under the same illumination con-
ditions. A plant’s reflectance varies in different regions
of the EM spectrum due to physical and chemical in-
teractions of the energy with the plant. Reflectance in
each region provides particular information about the
plant. For instance, the radiance reflected by a plant in the
visible region (350-700nm) is governed by plant pigments
(e.g., chlorophylls or carotenoids), in the NIR region
(700-1300 nm) the cellular structure of the plants gov-
erns the reflected radiance, and the Mid-IR region
(1300-2500 nm) provides information about the mois-
ture content present in the leaves of the plant (Lillesand
et al., 2000). Information gathered from energy reflected
across the spectrum can be used to assess the health
of the plants and contributing stress factors. . Fur-
thermore, there are certain specific bands that contain
unique information about plants. Therefore, a wide
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range of hyperspectral observations might be useful in
providing vital information in analyzing the effect of
different nematode numbers on plants in different
regions of the EM spectrum (Null, 2002; Kelley, 2003;
King, 2004). It is also possible that different nematode
numbers have varying effects on plants at different
wavelengths. These effects may range from being ex-
tremely significant to subtle.

With the magnitude of a dataset of hyperspectral
data, but not many training samples, the pattern rec-
ognition problem of associating a particular set of fea-
tures (for our study, wavelengths of the hyperspectral
data is considered as features) with a specific range of
nematode numbers is challenging. In our study, the
entire data set was divided into training and testing
samples. Training and testing data samples are nothing
but hyperspectral observations obtained from nema-
tode infested cotton plants, where each wavelength of
these hyperspectral observations forms the features. To
seek a solution for the above discussed pattern recog-
nition problem, an unsupervised Artificial Neural Net-
work (ANN) architecture was considered.

An artificial neural network (ANN) is a simple layer of
interconnected neurons. It iteratively adapts (trains) itself
by changing its structure (neuron positions) according to
the information provided to the network (Anderson and
McNeil, 1992). This adaptation is accomplished by ad-
justing the strength of the network connections (weights)
among neurons. The ANN can be trained either by su-
pervised learning or by unsupervised learning. In super-
vised learning, the network is provided with both input
(training data) and desired output. The network is trained
in such a way that when the network is provided with the
new data (test data), it gives an output very close to the
desired output. If the desired output is not obtained, then
the parameters used for training are varied accordingly

until the desired output is achieved (Anderson and
McNeil, 1992; Null, 2002; King et al., 2005). In un-
supervised learning, only the input data is provided,
and the network will solely classify the input data and
present the classified data in a self-organized, mean-
ingful way (Xin, 1999; Bin, 2004). The self-organized
classification performed by ANN based on similarity in
the input feature vector is called Self-Organized Maps
(Anderson and McNeil, 1992; Xin, 1999; Duda et al.,
2000; King et al., 2005).

Principle and Working of Self-Organized Maps: Kohonen
(1990) first introduced an unsupervised, self-ordering
and competitive artificial neural map widely known
as Self-Organized Feature Maps (SOFM), a.k.a., Self-
Organized Maps (SOM). SOM is widely used in data
clustering, pattern recognition and classification pur-
poses. Self-organized maps are usually implemented on
a 2-dimensional hexagonal or a rectangular grid (King
et al., 2000). Map grid is the standard method used to
visualize the SOM in output space. It is the projection of
high-dimensional data onto a low-dimensional space.
Map grids are either rectangular or hexagonal in shape
(SOM Toolbox Documentation, 2003). SOM has a prop-
erty of placing data exhibiting similar features in the same
or a neighboring map unit, thereby performing pattern
classification (Fig. 1) (Null, 2002; Bin, 2004; King et al.,
2005). The main principle of SOM is its ability to not
only compress the high-dimensional data into a low-
dimensional grid (2-D grid), but also to maintain the
relative distances among the data units present in the
multi-dimensional data space (Null, 2002). Samples
located far apart in high dimension will also be located
far apart on the map (King et al., 2000). SOM basically
involves two processes: Vector quantization and Vector
projection (Vesanto et al., 1999; Bin, 2004). Each map
neuron i is associated with d-dimensional codebook

FIG. 1. Principle/Working of SOM. SOM identifies the similarities in input samples in high-dimension and places the input data exhibiting
similar features onto the same or neighboring map units of low-dimensional map grid. Thus performing both the functions of pattern
recognition and data compression.
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vectorsmi = [mi1 mi2 mi3. . . .mid], where d is the dimension
of an input vector. Each neuron is connected with the
neighboring neuron by a neighborhood relation, which
determines the structure of the map (Goncalves et al.,
2005). During each training step, a sample vector x is
randomly chosen, and the Euclidean distance between
the input sample x and all the codebook vectors are
calculated. The minimum distance between the input
vector x and the codebook vector is a winning neuron for
the given input sample and is widely called Best Matching
Unit (BMU) (Vesanto et al., 1999; SOM Toolbox Docu-
mentation, 2003; Wu and Yen, 2003; Bin, 2004). Winning
neuron can be computed using the following formula
(Null, 2002):

BMUi ¼ min ifk x�m i kg ð1Þ

where k.k is the distance measure. The input vector is then
mapped on the location of the winning neuron (BMU), and
the neighboring nodes are updated and moved closer to-
wards or further away from the input vector (SOM Toolbox
Documentation, 2003; Goncalves et al., 2005;). This adap-
tation is done according to the following formula (SOM
Toolbox Documentation, 2003):

miðt þ 1Þ ¼ miþ hbmui½x(t)�mi(t)� ð2Þ

where hbmui is a neighborhood function. A standard
neighborhood function used is a Gaussian function (SOM
Toolbox Documentation, 2003) given by:

hbmu(t) ¼ a(t) expð� k rbmu � ri k2

2s2ðtÞ Þ ð3Þ

where a(t) is a learning rate ranging between [0,1] that de-
creases with time, s(t) is a Gaussian kernel, and krbmu-rik2 is
the distance measure. The mapping of d -dimensional output
vector (BMU) from input vector is called Vector quantiza-
tion, while the process of representing output vectors (BMU)
onto a low-dimensional (typically a 2-dimensions) hexagonal
or rectangular grid is known as Vector projection (Vesanto
et al., 1999; Wu and Yen, 2003; Bin, 2004). For this study,
the entire analysis was performed using an expanded version
of Null’s (2002) SOMASDGUI (Doshi, 2007), created on
MATLAB (The MathWorks Version 7.04) based on SOM
toolbox 2.0 (available at www.cis.hut.fi).

The primary objective of this study was to investigate
whether a correlation exists between the infected cot-
ton plant’s reflectance and the nematode numbers
present in the plant’s rhizosphere. This study examined
the possibility of classifying hyperspectral data based
solely on the nematode numbers estimated from the
soil samples. In addition to the primary objective, the
authors investigated the region in the EM spectrum
where maximum classification accuracies can be ob-
tained. To enhance the classification accuracies, the
authors applied advanced feature extraction and di-
mensionality reduction methods (e.g., DWT, PCA and

SOM-based method) to the hyperspectral reflectances.
Furthermore, this work briefly explored the idea of
combining standard feature extraction method with
Self-Organized Maps to further reduce the extracted
feature in order to improve classification accuracies.

Feature Extraction Methods: Hyperspectral data are usu-
ally high-dimensional. In our study, the dimension of
hyperspectral data was 2050. (451-2500 nm) (2151 di-
mension). It is necessary to reduce the dimension of the
data set when only few training samples are available in
order to avoid the problem of ‘‘curse of dimensionality.’’
‘‘The curse of dimensionality states that number of train-
ing samples of each class must be around ten times the
number of features’’ (Nakariyakul and Casasent, 2004).
It is also seen that reducing the dimension of the data
tends to increase the classification accuracy significantly
(Nakariyakul and Casasent, 2004). Therefore, the fea-
ture extraction methods are necessary in reducing the
data dimensionality as well in maintaining important
information from the signals (data). The various feature
extraction and dimensionality reduction methods used
for our study are discussed as follows:

(i) Reflectance as Features: The hyperspectral signatures
(reflectances) themselves are provided to SOM as
features and are then also classified using SOM. No fea-
ture extraction and dimensionality reduction methods
are applied to the hyperspectral ASD data.

(ii) SOM-based Feature extraction (BMU-feature extrac-
tion): In 2002, Null made use of self-organized maps
in extracting important bands from hyperspectral
signatures in order to perform classification. In this
method, once the map size is determined or user-
defined, the Best-Matching Unit (BMU) is calculated
for each d-dimensional input data sample. A Euclidean
distance matrix between the input data vector and its
best matching unit is calculated for all the input samples
and is given by the formula as follows:

DistMapunits X Dimesnions

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcodebookðBMUiÞ - input dataiÞ2

q
ð4Þ

The size of the distance matrix is given by (the size of
the map) X (dimension of input samples). For each
map unit where the sample is placed, a range is cal-
culated by the formula given as follows (Null, 2002):

Range ¼ maxðDistÞ �minðDistÞ ð5Þ

The map unit with no samples placed has a zero value.
An artificial threshold is generated for each range
with a non-zero value. This artificial threshold depends
on the percentage specified by the user where, the
higher the percentage, the more the number of bands
that are selected. Null (2002) used a range from 5 to
20%. For each percentage, classification accuracy was
calculated. Features were selected that provided the
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best classification accuracies at a given percentage. The
artificial threshold is given by the formula as follows
(Null, 2002):

thresholdsizeðmapgridÞ ¼ percentage�range

þminðDistÞ0 ð6Þ

The main advantage of this method was that size of
the map determines the number of features (bands).
Therefore, based on the similarity in the data vector,
SOM will place the samples onto the same or a neigh-
boring map unit. The more the samples placed in the
same map unit, the fewer the features will be selected
for classification.

(iii) Discrete Wavelet Transform (DWT): Discrete Wavelet
Transform is a mathematical transform which dissects
the signal into fine-scale and rough-scale information
widely known as detail coefficients and approximate
coefficients, respectively (Burrus et al., 1998; Bruce
et al., 2002, 2003). Most wavelet systems that satisfy a
multi-resolution approach (MRA) can project the signal
into the shifted and scaled version of a basis function
also known as mother wavelet (Burrus et al., 1998;
Bruce et al., 2003). In this study since the hyperspectral
signals are in wavelength, wavelength domain is con-
sidered instead of time domain (Bruce et al., 2003).
The basis function for discrete wavelet transform (DWT)
can be mathematically represented as:

c a;bðlÞ ¼
1ffiffiffi
a
p c ðl� b

a
Þ ð7Þ

Where c is the mother wavelet and l is the wave-
length. The factors a and b are used for dilation and
shifting in the mother wavelet. The DWT is usually
performed using an iterative dyadic tree (Fig. 2). Ac-
cording to the Mallat algorithm (Burrus et al., 1998),
dyadic DWT could be implemented using successive
series of high-pass and low-pass filters, whose filter
design is determined by the type of the mother wave-
let. To implement the dyadic DWT, it is assumed that
the length of the hyperspectral signals (in terms of

wavelength) is of power 2; if not, the signals are pad-
ded with zeroes to make the signals a power of 2. For
instance, if the signal is of length N = 2048, one can
have log2 (N) or 11 decomposition levels. At each de-
composition level, the signal is broken up into detailed
coefficients (d) and approximate coefficients (a) with
equal lengths. At the first decomposition level, length
of approximation and detailed coefficient is N/2 =
1024. At the second decomposition level, a1 is broken
up into a2 and d2 having length N/4 = 512. Hence, at
each decomposition level, the approximation co-
efficient is broken up into detailed and approximate
coefficients. Bruce et al. (2002) used these coefficients
as features for dimensionality reduction and classifica-
tion purposes. According to them, simple mother
wavelets perform better compared to higher order
wavelets. Hence, for this study, detailed coefficients
obtained using a Haar wavelet (Burrus et al., 1998),
which is the simplest of all wavelets, were considered as
features for classification purposes. Since large numbers
of coefficient combinations could be used as features,
this study limited its analysis to the following three
combinations of detail coefficients for all the regions:
Feature vector created from detail coefficients obtained
from first three decomposition levels (F3C); Feature
vector created from detail coefficients obtained from
all decomposition levels (ADC); and Best Wavelet (de-
tail) Coefficient (BWC) using automated process (co-
efficients from each decomposition level are given to
the SOM, and the one with best accuracy was selected).

(iv) DWT-BMU-based Feature Extraction: The use of detail
coefficients (from all decomposition levels) as features
contains most of the vital information about the signal,
but the length of the feature vector is nearly same as
the length of the hyperspectral signals, causing the
problem of ‘‘curse of dimensionality’’ (Nakariyakul
and Casasent, 2004). If the best wavelet coefficient(s) is
(are) used, the sequence is considerably reduced, but
it is possible to lose important information present
in the other detail coefficients. In addition to that, if
the best wavelet coefficient was from the first few

FIG. 2. Dyadic DWT decomposition (originally acquired from Math works Inc, 2006 and modified in paint).
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decomposition levels, the coefficient sequence used is
still large enough to cause the problem of ‘‘curse of
dimensionality’’ (Nakariyakul and Casasent, 2004). If
the manually selected detail coefficients from the first
three decomposition levels are used as features for
classification, the same problem of ‘‘curse of dimen-
sionality’’ persists. In order to reduce the sequence di-
mensions as well as preserve important information
from the sequence, the combination of DWT and
SOM/BMU-based feature selection method is used
(Moon and Merenyi, 1995; Campos and Carpenter,
1998; Logan, 1998; Cheong and Aggrawal, 2002; Doshi,
2007; Doshi et al., 2007a). In this approach, DWT was
first applied to the ASD hyperspectral signals using
a Haar mother wavelet. The signals were then decom-
posed into a series of detail and approximate coefficients
to the maximum or user-defined decomposition level.
At each decomposition level, only the detail coefficients
were stored and concatenated with the previous detail
coefficients to form a final output sequence consisting of
series of detail coefficients. The approximate coefficients
were discarded at all decomposition levels. The length
of the sequence would be same as the length of the hy-
perspectral signal if the maximum decomposition level
using a Haar wavelet is achieved. This sequence of de-
tailed coefficients was then given to Null (2002) et al.’s
SOM/BMU-based feature extraction and dimensionality
reduction method to extract important coefficients,
thereby reducing the dimension of the feature vector.
The reduced feature vector was then used as feature
classification purposes. In this study, SOM/BMU-based
feature extraction method was applied to two variations
of DWT: feature vector created from detail coefficients
obtained from first three decomposition levels (F3CB);
and feature vector created from detail coefficients ob-
tained from all decomposition levels (ADCB).

(v) Principal Component Analysis (PCA): Principal com-
ponent analysis is a standard statistical method widely
used in agricultural and remote sensing applications to
reduce the dimensionality of the data. It linearly trans-
forms the data into a new feature space having its new
axes orthogonal to one another (Duda et al., 2000; Bell
and Baranoski, 2004). This transformation decorrelates
the highly correlated remote sensing data, but main-
tains the maximum variability among them (Fig. 3). In
PCA, a symmetric covariance matrix is computed, with
each component indicating the correlation between
the two variables of the data vector (Bell and Baranoski,
2004). From the covariance matrix, orthogonal bases
are calculated using eigenvectors and eigenvalues based
on matrix theory (Hollmen, 1996; Duda et al., 2000;
SOM Toolbox Documentation, 2003). The eigenvectors
are arranged in descending order of eigenvalues to
transform the data into an orthogonal co-ordinate sys-
tem, with the first few principal components having the
highest amount of variability and retaining a significant
amount of information from the data (Hollmen, 1996;

Duda et al., 2000; SOM Toolbox Documentation,
2003). The remaining components could be discarded.
In this way, PCA are widely used for feature extraction
and dimensionality reduction.

In the case of hyperspectral signal, the number of
principal components is equal to the number of bands.
For this study, the first four PCA components were con-
sidered and used as features for classification purposes.

(vi) PCA-BMU-based Feature Extraction: In the standard
PCA, as discussed above, only the first few components
contain the majority of the variability. Therefore, only
the first few components are selected, while the rest of
the components are discarded. There are two disad-
vantages in using the above-discussed traditional pro-
cedure: selecting the best number of components as
features for classification; and possibilities of eliminat-
ing higher-order components (with lower variance)
that might be important/better for classification, es-
pecially in change detection applications. In order to
prevent discarding important higher-order components
and to avoid the problem of component selection, a
combination of standard PCA with SOM/BMU-based
feature extraction method was used for our data
analysis. The procedure is to apply standard PCA to
the reflectance of various classes. These PCA compo-
nents are used as inputs for the Null’s (2002) SOM/
BMU-based feature extraction method. The output of
this method would be the combination of both higher
order as well as lower order PCA components that are
useful in classification of different nematode classes.
The extracted PCA components were then used as
features in classification purposes (Rosado-Munoz
et al., 2002; Mao, 2005; Doshi, 2007).

MATERIALS AND METHODS

Data Collection: Cotton plants were grown in field mi-
croplots, located on the North Plant Sciences Research

FIG. 3. Principal Component Transform. The figure shows that
shifting the axes maximizes class separability.
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Farm at Mississippi State University. Microplots con-
sisted of 76-cm diam. fiber-glass cylinders placed 45-cm
deep in the soil. The soil was classified as a Freestone
sandy loam (61.2%, 31.2%, 7.5%, Sand-Silt-Clay, pH
6.4). The entire test area was covered with a 6-ml thick
plastic tarp and fumigated with methyl bromide [397 kg/
ha (57:33; methyl bromide:chloropicrin)] 45 d prior to
planting. The tarp was removed after 7 d, and the plots
were allowed to air for 38 d prior to planting for each year.
Each microplot was artificially infested with one of five
initial (Pi) levels of a greenhouse-maintained culture of
R. reniformis. Reniform nematode was collected from a
field located in Thalahatchie Co., MS and propagated
on cotton (PM 1218BR) in the greenhouse. After 60 d,
plants were removed, and the nematodes were extracted
from the soil by combined gravity screening and sucrose
centrifugal floatation (specific gravity = 1.13) (Jenkins,
1964).

The initial population levels of Pi = 0, Pi = 500, Pi =
1,000, Pi = 1,500 and Pi = 2,000 R. reniformis juveniles
and vermiform adult life stages per 100 cm3of soil were
added to the appropriate microplot and incorporated
into the soil. Cotton seeds were planted on raised linear
rows at a rate of 5 seeds/0.31 meters linear row. The test
was arranged in a randomized complete block design
with five replications. Plants growing in each microplot
were maintained through the season with standard pro-
duction practices as recommended by the Mississippi
Extension Service. Plants were monitored once every
two weeks throughout the cotton growing season, and
the parameters of plant height, soil temperature, can-
opy temperature and average relative humidity were
recorded (Kelley, 2003). The ASD hyperspectral data
were collected for each microplot using a Fieldspec Pro
Spectroradiaometer with a 1.4 m fiber optic cable and
258 field of view (FOV). The ASD hyperspectral data
consists of 2,151 bands ranging from 350-2500 nm. For
the year 2001, the first hyperspectral readings were
taken on 6 June 2001, 25 d after planting (DAP) (Doshi,
2007). The hyperspectral readings were taken from
three cotton plants, one leaf/plant single cotton leaves,
each located at three nodes basal from the apical portion
of the plants in all microplots (Kelley, 2003). Hyper-
spectral reflectances were collected using a clamp-on
tungsten filament (i.e., an artificial light source) used
to minimize any variability caused by natural light and
to eliminate unwanted atmospheric effects. The leaf
target was totally enclosed and not subject to any other
source of illumination. For each ASD reading, corre-
sponding soil samples were collected 15.2 cm from the
main stem of the same plant in each microplot. Sam-
ples consisted of six 2.5-cm-diam., 20-cm-deep soil
cores. Samples in each microplot were bulked and a 100
cm3 sub-sample was extracted, and R. reniformis num-
bers were enumerated. The hyperspectral readings
along with their respective soil samples were collected
once every two weeks from all microplots. These dates

included 19 June (33 DAP), 25 June (39 DAP), 10 July
(54 DAP), 6 August (81 DAP) and 20 August (95 DAP)
in 2001. Hence two files were generated, one file with
the R. reniformis count, and another with the ASD hy-
perspectral data for the plants growing in a specific
microplot at a given date. For the year 2006, the same
methods and procedures used to infest the microplots
in 2001 were repeated to conduct the tests. The same
procedure was used to collect the corresponding hy-
perspectral readings. The hyperspectral readings along
with their respective soil samples were collected on: 14
June (44 DAP), 21 June (51 DAP), 28 June (58 DAP), 5
July (65 DAP), 12 July (72 DAP), 26 July (86 DAP) and 2
August (93 DAP).

Data Analysis: The hyperspectral (reflectance) data
were divided randomly into three classes based solely
on R. reniformis numbers. For the year 2001, there were
1,107 ASD hyperspectral data samples collected from
the microplots, and for the year 2006 there were 551
samples. In our data set, the nematode numbers varied
from 0 to around 6500 reniformis/100 cm3 soil. Different
combination of classes (based on nematode numbers)
were tried and their corresponding hyperspectral re-
flectances were given to unsupervised SOM. Before
providing input to the SOM, wavelength bands 350-450
nm were removed due to the fact there is very little
radiance from the sun in this region of the spectrum
and it is highly affected by the atmosphere. The re-
flectance data collected in this part of the spectrum was
very noisy, and so an a priori decision was made to ex-
clude this data from the analysis. For our given data set,
the three best distinguishable classes provided by un-
supervised SOM were 0-1,500, 2,000-4,000 and 4,501
and above R. reniformis/100 cm3 soil (Table 1). There
were two reasons in selecting the following classes: 1. An
unsupervised map created from classes having these
ranges gave the best separation compared to the other
combination of classes. 2. All three classes had suffi-
cient number of samples (hyperspectral signatures).

It should be noted that the nematode classes were
separated by 500 nematodes/100 cm3 soil in order to
avoid any overlapping that SOM may find between the
classes. As explained earlier, the classes were initially
divided randomly, as the authors wanted to observe
whether separating the classes by 500 nematodes/100
cm3 soil increases the distinction between the three
classes. In other words, the authors wanted to observe

TABLE 1. Division of classes based on Rotylenchulus reniformis
numbers and labels assigned for each classes.

Class
Labels

assigned

Range
(R. reniformis numbers)/

100 cm3 of soil

No. of samples

2001 2006

Class 1 Raaa 0-1500 653 234
Class 2 Raac 2000-4000 115 114
Class 3 Raca 4501 and above 272 155

184 Journal of Nematology, Volume 42, No. 3, September 2010



the correlation between the nematode numbers and its
affect on hyperspectral reflectances (signals). By sepa-
rating the classes by 500 nematodes/100 cm3 soil, we
observed that the classes were more precisely distin-
guishable. Since there is no exact one-to-one correlation
between nematode numbers and its effect on hyper-
spectral reflectance, it is difficult to precisely define
classes. Hence by separating the classes by 500 nema-
todes, the authors are trying to delineate (or capture)
the effect of increase in nematode numbers of the cor-
responding hyperspectral reflectances obtained from
the leaves of the cotton plants. Hence, the two ranges
that were removed from our analysis were 1001-1500
and 3501-4000 nematodes/100 cm3 soil. Therefore,
the total number of ASD samples used in our data
analysis were 1040 samples in year 2001 and 503 sam-
ples in year 2006.

To investigate the EM region in which R. reniformis
numbers most affected the cotton plants, the hyper-
spectral reflectances for all three classes were divided
into three sub-regions (Table 2). Different above-men-
tioned feature extraction and dimensionality reduction
techniques were applied to all the regions for all three
classes. The features obtained from advanced feature
extraction and dimensionality extraction methods were
then provided to an expanded version of Null’s (2002)
SOMASDGUI, a MATLAB-based graphical user interface
created in conjunction with SOM Toolbox (www.cis.hut.fi)
for classification and visualization purposes (Fig. 4)
(Null, 2002; Doshi, 2007). The idea is to initially select
the number of classes based on the nematode numbers.
Once the classes are selected, the hyperspectral signa-
tures belonging to the particular classes are manually
labeled. These labels assigned to the hyperspectral sig-
natures are used for two purposes: (i) division of the data
set between training and testing samples and (ii) rep-
resentation of the output on the map. Once the data set
is provided into the SOM, SOMASDGUI allows the user
to enter the region and the type of feature extraction
method to be applied on the given region. Classification
accuracies are then computed based on supervised SOM
classification method. The output is projected onto the
map grid along with its U-matrix (Fig. 4) (Doshi, 2007).
For our study, the classes were assigned different labels
(Raaa-class 1, Raac-class 2 and Raca-class 3) (Table 1).
The labels assigned for the different classes are solely for
visualizing the location of the classes on the map-grid

and have no meaning as such. For this study, the authors
have manually color-coded each class (red-class 1, green-
class 2 and blue-class 3) for better visualization.

Visualization: Two types of visualization methods were
considered: (i) Map grid: For this study, a rectangular-
sheet type map grid was considered. The user specifies
the grid size and shape, and then corresponding samples
will be placed on the map depending upon their location
in high-dimensional input space. Figure 5 shows the map
grid created using features obtained from SOM/BMU
method for the year 2001 in region 4. (ii) U-Matrix:
Ultsch and Seimon (1990) first developed Unified Dis-
tance Matrix, also known as U-matrix, to visualize the
distances between the neighboring neurons. It computes
the distance between a given codebook vector and its
adjacent neighbors and color-codes these distances onto
the map (SOM toolbox Documentation, 2003). Darker
colors in general indicate larger distances, thereby in-
dicating the dissimilarities between neurons, while ligh-
ter colors indicate small distances. Darker areas in the
U-matrix indicate cluster borders between the classes.
The size of the U-matrix is (2X-1) x (2Y-1), where X and Y

TABLE 2. Division of hyperspectral data into 3 sub-regions along
with the entire region of study

Region No. of bands in a particular region

Region 1 451-650 nm (Visible region)
Region 2 651-1300 nm (red edge + NIR region)
Region 3 1301-2500 nm (Mid-IR region)
Region 4 451-2500 nm

FIG. 4. Block diagram for working of the SOM Toolbox (figure
partially acquired from SOM Toolbox Documentation and modified
in MS-Paint).
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are the rows and columns of the map grid (Ultsch and
Seimon, 1990). The U-matrix in Figure 6 is from an
unsupervised learning of SOM using features obtained
from SOM/BMU feature extraction method.

SOM Parameters: The features obtained from the var-
ious methods were classified and visualized after setting
the SOM parameters. For this research work, the impor-
tant SOM parameters were: Algorithm: Batch training

FIG. 5. Map grid created using features obtained from SOM/BMU method for the year 2001. Classes are color coded as Red for class 1 green
for class 2 and 3 blue for class 3. Color is assigned with the Map grid with maximum number of samples in the map unit. Junk part indicates the
combination of all three samples or the samples whose signatures are distinctively different from the rest of the samples. Figure is modified in
MS-Paint for better representation and visualization. Black borders are manually drawn to indicate distinction between classes.

FIG. 6. U-matrix created using features obtained from SOM/BMU method. It is based on the map grid shown in Fig. 5. Figure is modified in
MS-Paint for better representation and visualization. Black borders are manually drawn to indicate distinction between classes.
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algorithm; Initialization: Linear Initialization; Neighborhood
function: Gaussian; Lattice: Sheet; Grid type: Rectangular
grid; Training Data set: 75% of the total data set; Testing
Data set: 25% of the total data set; Grid size: The grid size
was determined by using the empirical formula given in
SOM Toolbox. Some modification was made to the for-
mula to obtain a square grid with nearly same number
of map units as obtained from the empirical formulae
of the SOM toolbox. The modified formula is given as
follows (SOM Toolbox Documentation, 2003; Doshi,
2007):

rows; columns ¼ roundð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsize of training dataÞ0:54321

q
Þ ð8Þ

Other Parameters: The other parameters such as learning
rate, neighborhood function, length of training (learning),
etc., were the same as default setting of SOM Toolbox.

Classification: The hyperspectral reflectance of all
three classes was divided into training and testing sets.
Supervised SOM classification method was used in clas-
sifying the data. Supervised SOM algorithm is a slight
modification of the original SOM in which an additional
vector containing class information is added along with
the dimension of the input vector (training data). The
size of the additional class vector depends on the num-
ber of classes used for classification. For a given input
sample, only one of the member components of the class
vector has value ‘1’ while others have value ‘0’, thereby
indicating the class of the input sample (SOM Toolbox
Documentation, 2003). The class vector is not used
to determine the Best Matching Units (BMU), only
the input vector is used. However, to represent these
BMU on to the map, only the information from the
class vector is used (Hannula et al., 2003; SOM Toolbox
Documentation, 2003; Xiao et al., 2005, Xiao et al., 2006;
Doshi, 2007; Doshi et al., 2007b;). This causes a class-
clustered map (Null, 2002). According to SOM Toolbox
Documentation (2003), ‘‘the class of each map unit is
determined by taking maximum over these added
components, and a label is give[n] accordingly.’’ One of
the advantages of using SOM for classification is that it
will assign the map based on the number of the training
samples in each class. The greater the number of the
training samples in a particular class, the more the map
units assigned to that class. Hence, once the class-clus-
tered supervised map is created from the features ob-
tained by applying various techniques to the hyper-
spectral reflectances and is projected onto the map, the
same feature extraction techniques are applied to the
testing data and are provided to the supervised map for
class estimation. The testing samples are placed on the
(trained) map based solely on the similarity of the fea-
tures between testing and training samples. But since the
classes of the testing samples are known in advance, the
labels of testing samples are compared with the labels
of trained SOM (supervised maps) and, based on their

labeling, classification accuracies are calculated. In other
words, accuracies are judged solely on the correct
placement of testing sample placed on one of the three
classes located on the map-grid. The total accuracies for
each feature extraction method for each region were
calculated as the weighted average of individual class ac-
curacies. The U-matrix obtained using supervised-SOM
algorithm using ADCB (DWT + SOM) feature extraction
method in region 4 for the year 2006 is shown in Figure 7.
From Figure 7, three distinct clusters are formed for the
three classes with some overlap of class 2 with both the
remaining classes. Darker areas in the figure indicate
the cluster border for the given class.

RESULTS AND DISCUSSION

For the year 2001, for reflectances used directly as
features and then provided to SOM-based architecture,
classification accuracies were 55% and 61% in the visi-
ble and red edge + NIR regions, respectively, and 68%
in the mid-IR region and for the Region 4 (all regions)
(Tables 3-6), (Fig.8). Large feature set for small training
data could be one of the reasons for lower accuracies
when reflectances are directly used as features. Classi-
fication accuracies were slightly improved when Null’s
SOM-based method was applied to the hyperspectral
reflectances (in various sub-regions). These were 61%
and 66% in Visible and red edge + NIR regions, re-
spectively, and 72% and 71% in Mid-IR region and
Region 4, respectively (Tables 3-6), (Fig.8). This slight
improvement in classification accuracies may have been
due to the reduced set of features obtained from SOM-
based feature extraction method, however, based the
confidence intervals it was not possible to state whether

FIG. 7. U-matrix of the supervised SOM created using ADCB
(DWT + SOM) as a feature extraction and dimensionality reduction
method applied in region 4 for the year 2006. Figure is modified in
MS-Paint for better understanding. Black borders are manually drawn
to indicate distinction between classes.
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the improvement was statistically significant or not.
Application of Discrete Wavelet Transform gave mixed
results. Classification Accuracies obtained using F3C
combination of DWT as features were 53% and 63% in
Visible and red edge + NIR regions and 66% and 74%
in Mid-IR region and Region 4, respectively (Tables 3-6).
Classification Accuracies using BWC combination of
DWT as features were 59% and 71% in Visible and red
edge + NIR regions and 67% and 75% in Mid-IR region
and Region 4, respectively (Tables 3-6), (Fig.8). Classi-
fication Accuracies using ADC combination of DWT as
features were 72% and 56% in Visible and red edge +
NIR regions and 65% and 70% in Mid-IR region and
Region 4, respectively (Tables 3-6). However, the use of
various combinations (ADC, F3C and BWC) wavelet
domain improves the accuracies in some regions but
does not solve the problem of high-dimension. Hence,
two combinations of DWT (ADC and F3C) were further

subjected to Null’s (2002) SOM-based method for di-
mensionality reduction. Classification accuracies for
the features obtained from the combination of F3C and
SOM-based method were 71% and 68% in Visible and
red edge + NIR regions and 80% and 80% in Mid-IR
region and Region 4, respectively (Tables 3-6), (Fig.8).
Classification accuracies for the features obtained from
the combination of ADC and SOM-based method were
58% and 65% in Visible and red edge + NIR regions
and 76% and 71% in Mid-IR region and Region 4, re-
spectively (Tables 3-6), (Fig.8). In many cases, the ac-
curacies obtained using the combination of the detail
coefficients from the first three decomposition levels
(F3C) with SOM (i.e., F3CB) were higher compared to
the accuracies obtained using combination of the detail
coefficient from all decomposition levels (ADC) with
SOM (i.e., ADCB) because according to Null’s (2002)
SOM-based feature extraction method, the maximum

TABLE 3. Classification accuracies in visible region (451 nm – 650 nm) obtained for years 2001 and 2006 using various feature extraction
methods.

Feature extraction methods

Year 2001 Year 2006

Class
1(%)

Class
2 (%)

Class
3 (%)

Total
(%)

95% Confidence
interval

Class
1 (%)

Class
2 (%)

Class
3 (%)

Total
(%)

95% Confidence
interval

Reflectance as features 58 29 58 55 2.5 50 65 55 55 3.7
SOM/BMU- based features 67 33 60 61 2.5 51 50 62 54 3.7
F3Ca 63 35 37 53 2.5 81 57 84 77 3.1
BWCb 69 35 44 59 2.3 89 83 69 82 2.9
ADCc 69 92 69 72 2.5 63 25 48 50 3.7
F3CBd 70 52 82 71 2.3 85 68 73 78 3.1
ADCBe 68 38 43 58 2.5 81 47 53 65 3.5
First four principal components 58 32 50 53 2.5 61 65 39 55 3.7
All Principal components +

SOM/BMU
67 52 45 60 2.5 73 36 55 59 3.6

a Detail Coefficients from first three decomposition levels.
b Best Wavelet Coefficient(s).
c Detail Coefficients from all decomposition levels
d Detail Coefficients from first three decomposition levels + SOM/BMU.
e Detail Coefficients from all decomposition levels + SOM/BMU.

TABLE 4. Classification accuracies in red edge + NIR region (651nm-1300nm) obtained for the year 2001 and year 2006 using various
feature extraction methods.

Feature extraction methods

Year 2001 Year 2006

Class
1 (%)

Class
2 (%)

Class
3 (%)

Total
(%)

95% Confidence
interval

Class
1 (%)

Class
2 (%)

Class
3 (%)

Total
(%)

95% Confidence
interval

Reflectance as features 62 34 69 61 2.5 77 54 48 63 3.6
SOM/BMU- based features 71 32 68 66 2.4 87 50 64 72 3.4
F3Ca 74 18 57 63 2.5 75 61 44 63 3.6
BWCb 79 35 68 71 2.4 95 46 60 73 3.4
ADCc 64 15 53 56 2.5 73 47 62 64 3.5
F3CBd 72 55 62 68 2.4 87 50 48 67 3.5
ADCBe 69 35 68 65 2.4 79 35 80 70 3.4
First four principal components 65 32 67 62 2.5 83 21 50 59 3.6
All Principal components +

SOM/BMU
61 38 71 61 2.5 79 54 60 68 3.5

a Detail Coefficients from first three decomposition levels.
b Best Wavelet Coefficient(s).
c Detail Coefficients from all decomposition levels
d Detail Coefficients from first three decomposition levels + SOM/BMU.
e Detail Coefficients from all decomposition levels + SOM/BMU.

188 Journal of Nematology, Volume 42, No. 3, September 2010



number of coefficients that can be selected depends on
the size of map grid, therefore, only a limited number
of coefficients are selected as best features for classifi-
cation depending on the artificially generated threshold,
and, for most of the cases, the best wavelet coefficient
was from the first three detail coefficients.

The use of the first four lower-order PCA compo-
nents as features via application of PCA in various re-
gions of EM spectrum gave classification accuracies of
53% and 62% in visible and red edge + NIR regions and
72% and 71% in mid-IR region and region 4, respec-
tively (Tables 3-6), (Fig.8). The use of PCA to reduce
the dimensionality of data has two problems: selecting
the number of components for analysis, and losing vital
information present in higher-order PCA components.
Combination of PCA with Null’s (2002) SOM-based
method solves both the problems. The use of PCA with
SOM-based feature extraction method gave classification

accuracies of 60% and 61% in visible and red edge + NIR
regions and 72% and 71% in both mid-IR region and
region 4 (Tables 3-6), (Fig.8).

For the year 2006, the use of reflectances as features
gave classification accuracies of 55% and 63% in Visible
and red edge + NIR regions and 70% and 67% in mid-
IR region and region 4, respectively (Tables 3-6),
(Fig.9). When Null’s (2002) SOM-based method was
applied to reflectances, the classification accuracies
were 54% and 72% in visible and red edge + NIR re-
gions and 71% and 67% in Mid-IR region and Region
4, respectively (Tables 3-6), (Fig.9). The use of F3C as
features produced classification accuracies of 77% in
visible region, 63% in red edge + NIR region, 66% in
mid-IR region, and 69% in region 4, respectively (Ta-
bles 3-6), (Fig.9). The use of BWC as features produced
the classification accuracies of 82% in visible region,
73% in red edge + NIR region, 74% in mid-IR region

TABLE 5. Classification accuracies in mid-IR region (1301 nm – 2500 nm) obtained for years 2001 and 2006 using various feature extraction
methods.

Feature extraction methods

Year 2001 Year 2006

Class
1 (%)

Class
2 (%)

Class
3 (%)

Total
(%)

95% Confidence
interval

Class
1 (%)

Class
2 (%)

Class
3 (%)

Total
(%)

95% Confidence
interval

Reflectance as Features 74 49 61 68 2.4 83 54 60 79 3.5
SOM/BMU- based features 80 43 64 72 2.4 81 50 69 71 3.4
F3Ca 72 55 57 66 2.4 83 47 55 66 3.5
BWCb 70 55 65 67 2.1 87 61 62 74 3.3
ADCc 70 45 63 65 2.4 89 50 60 71 3.4
F3CBd 91 35 74 80 2.3 87 47 56 69 3.4
ADCBe 84 43 70 76 2.3 77 72 44 66 3.4
First four principal components 83 29 62 72 2.4 89 40 30 60 3.6
All Principal components +

SOM/BMU
77 18 81 72 2.4 79 50 64 68 3.4

a Detail Coefficients from first three decomposition levels.
b Best Wavelet Coefficient(s).
c Detail Coefficients from all decomposition levels
d Detail Coefficients from first three decomposition levels + SOM/BMU.
e Detail Coefficients from all decomposition levels + SOM/BMU.

TABLE 6. Classification accuracies in entire region (451 nm -2500 nm) of study obtained for years 2001 and 2006 using various feature
extraction methods.

Feature extraction methods

Year 2001 Year 2006

Class
1 (%)

Class
2 (%)

Class
3 (%)

Total
(%)

95% Confidence
interval

Class
1 (%)

Class
2 (%)

Class
3 (%)

Total
(%)

95% Confidence
interval

Reflectance as Features 73 38 69 68 2.4 87 36 60 67 3.5
SOM/BMU- based features 73 55 74 71 2.3 81 25 75 67 3.5
F3Ca 83 52 61 74 2.3 80 54 64 69 3.6
BWCb 76 71 75 75 2.2 95 75 64 81 3.0
ADCc 78 23 72 70 2.4 91 36 69 72 3.4
F3CBd 84 55 81 80 2.1 85 54 71 74 3.3
ADCBe 76 32 75 71 2.4 89 61 82 81 2.9
First four principal components 75 23 68 67 2.4 75 47 55 63 3.5
All Principal components +

SOM/BMU
72 35 82 71 2.3 71 36 69 63 3.6

a Detail Coefficients from first three decomposition levels.
b Best Wavelet Coefficient(s).
c Detail Coefficients from all decomposition levels
d Detail Coefficients from first three decomposition levels + SOM/BMU.
e Detail Coefficients from all decomposition levels + SOM/BMU.

Remote Sensing Rotylenchulus reniformis: Doshi et al. 189



and 81% in Region 4, respectively (Tables 3-6). The use
of ADC as features produced the classification accura-
cies of 50% in visible region, 64% in red edge + NIR
region and 71% and 72% in both mid-IR region and in
region 4, respectively (Tables 3-6) (Fig.9). Classification
accuracies for the features obtained from the combi-
nation of F3C and SOM-based method varied from 78%
and 67% in visible and red edge + NIR regions to 69%
and 74% in mid-IR region and region 4, respectively
(Tables 3-6), (Fig.9). For the year 2006, combination of
ADC with SOM-based feature extraction method pro-
duced classification accuracies of 65% in visible region,
70% in red edge + NIR region, 66% in mid-IR region

and 81% in region 4, respectively (Tables 3-6), (Fig.9).
The use of first four components as features produced
the classification accuracies of 55% in visible region, 59%
in red edge + NIR region, 60% in mid-IR region and 63%
in region 4, respectively (Tables 3-6), (Fig.9). Finally, the
combination of PCA with SOM-based method produced
the classification accuracies of 59% in visible region, 68%
in red edge + NIR region, 68% in mid-IR region and 63%
in region 4, respectively (Tables 3-6), (Fig.9).

From the results (Tables 3-6), classification accuracies
for the years 2001 and 2006 were nearly consistent (in
terms of accuracy percentages) for all feature extraction
methods in different regions of EM spectrum (except

FIG. 8. Accuracy chart for the year 2001 for different feature extraction methods in different regions of EM spectrum.

FIG. 9. Accuracy chart for the year 2006 for different feature extraction methods in different regions of EM spectrum.
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region 1) discussed in Table 2 (Fig. 10). This was also
evident by observing the confidence intervals for the
classification accuracies (Tables 3-6). The confidence
intervals for each class’s accuracies place each class’s
accuracies in the same range (West, 2006). Confidence
intervals help one interpret whether accuracies in any
particular region or group outperform any other partic-
ular region or group based on overlapping of the accu-
racy range between two groups or regions (West, 2006).

The overall classification accuracies for the three
classes obtained using supervised SOM classification
method in different regions of EM-spectrum for both
years (2001 and 2006) using various feature extraction
methods varied from upper 50% to lower 80% (Tables
3-6). This demonstrates that there is a positive correla-
tion between the nematode numbers present in the
plant’s rhizosphere and the hyperspectral signatures
(reflectances) collected from the corresponding plants.
A plant’s reflectance varies according to the nematode
numbers present in the plant’s rhizosphere. Classifica-
tion accuracies of 60% to 70% could be considered
fairly good given the fact that the classes were divided
randomly, factors such as growth stage and days after
planting were not taken into account, and the effect of
nematodes on the reflectance was unknown. It is also
evident that classification accuracies in the Mid-IR re-
gion were comparable to the accuracies obtained in the
Visible and the red edge + NIR regions for most of the
feature extraction methods for both years (Tables 3-6).

This data indicates that R. reniformis numbers may not
only affect the cellular structure of the leaves, but also
the moisture-uptake capability of the plants (Lillesand
et al., 2000; King, 2004; Doshi, 2007). Our study also
shows that in most regions (except region 1), the clas-
sification accuracies obtained from the combination of
SOM with standard feature extraction methods were
nearly equal or exceeded the classification accuracies
obtained from the traditional methods themselves.
(Table 4-6). The only exception was for the year 2006
mid-IR region (region 3) where classification accuracy
obtained using ADC (71%) outperformed the classifi-
cation accuracy obtained using ADC + BMU (66%)
(Table 5). It was also seen that even though the overall
classification accuracies in spectral regions 2, 3, and 4
were about 60 and higher 70 percentile for most of the
(except in region 2 for ADC feature extraction method
for the year 2001 and PCA’s first four components for
year 2006) feature extraction methods, the individual
classification accuracies for Class 1 in these three spectral
regions (with nematode numbers less than or equal to
1,500 nematodes per cm3 soil) varied from 60% to lower
90% for both years in most cases. This result seems to be
encouraging, given the fact that the threshold at which it
is vital to start a nematicide management program for
R. reniformis is in this range (Blasingame et al., 2002).
Nematologists have established a population density of
200-250 nematodes/100 cm3 soil in spring and 1,000
nematodes/100 cm3 soil in fall as an economic threshold

FIG. 10. Accuracy comparison chart for the year 2001 and 2006 using different feature extraction methods in different regions of EM
spectrum.

Remote Sensing Rotylenchulus reniformis: Doshi et al. 191



for R. reniformis (Blasingame et al., 2002). Once this
density level is attained a management practice is war-
ranted. This threshold is important because the cost of
a nematicide management program above this threshold
is less than the cost caused due to yield loss (Nova, 2001;
Boyd et al., 2006). The results (Tables 3-6) also show that
class 2 had the lowest accuracies in general, for both the
years in different regions of the EM spectrum. This could
be because class 2 had the least number of samples
compared to the other two classes for both years.

Although class 3 accuracies varied from lower 30% to
lower 80% for different regions using various feature
extraction methods, most of the class 3 accuracies were
in the range 55% or above for most of the feature ex-
traction methods in all regions for both years. From Ta-
ble 6, it is clear that the classification accuracies of class
3 was more than 60% in Region 4 for both years for all
feature extraction methods except in year 2006,when
PCA components were used as features for calculating
classification accuracies (55%). We hypothesize that the
accuracies for class 3 were lower compared to class 1 be-
cause, as the number of nematodes in the soil increases,
there might be an ‘intra-specific competition’ between the
nematodes (Koenning et al., 1996). We believe that since
cotton roots are confined to restricted growth in the field
microplot, it might reduce the effect of the nematodes on
the cotton plant for a given period of time, thereby pro-
moting the plant’s growth, which in turn causes more class
3 samples to overlap with other two classes (Koenning
et al., 1996). In other words, we believe that there is a
positive correlation between the nematode numbers
present in plant’s rhizosphere with plant’s hyperspectral
reflectances. This means that due to ‘intra-specific com-
petition’ between the nematodes, even though the num-
ber of nematodes in plant’s rhizosphere is high, its effect
on plant’s reflectance might be low. This might cause
SOM to misplace the class 3 samples into other two classes.

Finally, our research also suggests that the use of remote
sensed hyperspectral data with the self-organized maps
altogether provides a different and unique perspective in
estimating different R. reniformis numbers. We theorized
that this technique could prove extremely time-efficient in
the sense that compared to the conventional means of
calculating nematode numbers from soil, the above ap-
proach provides result in fairly shorter time (in hours). It
should be noted that classes were exclusively grouped
together in terms of nematode numbers present in the
plant’s rhizosphere at the time of data collection, while
the growth and biomass of the plants at a given time were
not taken into account. Hence it would be beneficial to
classify the nematode numbers for a given date and time
having uniform biomass. This might allow one to estimate
the nematode number more accurately for a given bio-
mass at a particular growth stage. Furthermore, it should
be noted that although the results seem to be encourag-
ing in classification of nematode numbers, it is neces-
sary to validate the result with a larger set of data before

putting it for practical and commercial use. However, the
practical implementation of this approach is not without
its challenges. The utilization of specific parts of the
spectrum is the key to any practical instrument for field
use. Any eventual measuring system is envisioned as a
machine mounted unit that could be moved around a
field at the appropriate growth stages for making strategic
and economic nematicide applications. By mounting the
measuring system on a tractor, the necessity of atmo-
spheric corrections can be circumvented. As stated pre-
viously, reflectance is a derived quantity that has been
normalized for a varying illumination conditions. The
normalization process for ensuring reliable measure-
ments for the tractor mounted system is envisioned to
be similar to the methodology used with the handheld
spectroradiometers used in this research. Finally, al-
though much of this research focused on leaf measure-
ments, the research team has also been conducting farm
measurements of canopies. The results are encouraging
and therefore, it is deemed highly probable that an in-
strument for measuring nematode populations is feasible.
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