Parasitism of Molluscs by Nematodes: Types of Associations and Evolutionary Trends


  • P. S. Grewal
  • S. K. Grewal
  • L. Tan
  • B. J. Adams


araeolamida, ascaridida, diplogastrida, evolution, mermithida, mollusca, nematodes, parasitism, rhabditida, spirurida, strongylida


Although there are no confirmed fossil records of mollusc parasitic nematodes, diverse associations of more than 108 described nematode species with slugs and snails provide a fertile ground for speculation of how mollusc parasitism evolved in nematodes. Current phylogenic resolution suggests that molluscs have been independently acquired as hosts on a number of occasions. However, molluscs are significant as hosts for only two major groups of nematodes: as intermediate hosts for metastrongyloids and as definitive hosts for a number of rhabditids. Of the 61 species of nematodes known to use molluscs as intermediate hosts, 49 belong to Metastrongyloidea (Order Strongylida); of the 47 species of nematodes that use molluscs as definitive hosts, 33 belong to the Order Rhabditida. Recent phylogenetic hypotheses have been unable to resolve whether metastrongyloids are sister taxa to those rhabditids that use molluscs as definitive hosts. Although most rhabditid nematodes have been reported not to kill their mollusc hosts prior to their reproduction, some species are pathogenic. In fact, infective juveniles of Phasmarhabditis hermaphrodita vector a lethal bacterium into the slug host in which they reproduce. This life cycle is remarkably similar to the entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae. Also, the discoveries of Alloionema and Pellioditis in slugs are interesting, as these species have been speculated to represent the ancestral forms of the entomopathogenic nematodes. Development of the infective stage appears to be an important step toward the acquisition of molluscs as definitive hosts, and the association with specific bacteria may have arisen in conjunction with the evolution of necromeny.