Density-Dependent Multiplication and Survival Rates in Heterodera glycines


  • T. C. Todd
  • J. H. Long, Jr.
  • T. R. Oakley


density-dependence, heterodera glycines, multiplication rate, nematode, overwinter survival


Seasonal multiplication and overwinter survival are density-dependent in Heterodera glycines. At low to moderate population densities, the nematode is capable of large population increases on susceptible soybean cultivars and high rates of oversummer or overwinter survival in the absence of a host. To improve estimates of H. glycines multiplication and survival rates, egg densities were monitored for 12 cropping sequences across 10 years. Log-linear regression analysis was used to describe and compare density-dependent relationships. Growing-season change in H. glycines egg densities was density-dependent for all crops (susceptible soybean, resistant soybean, and nonhost), with slope estimates for the density-dependent relationship greater for susceptible soybean compared with a non-host crop. Overwinter population change also was density-dependent, with similar declines in survival rates observed for all crops as population densities increased. Survival was greater following susceptible soybean compared with resistant soybean, with an intermediate rate of survival associated with non-host crops. Survival estimates greater than 100% frequently were obtained at low population densities, despite attempts to account for sampling error. Rates of growing-season multiplication and survival, when standardized for population density, declined with year of the study. Standardized overwinter survival rates were inversely related to average daily minimum temperature and monthly snow cover.