Competition between Heterodera glycines and Meloidogyne incognita or Pratylenchus penetrans: Independent Infection Rate Measurements

Authors

  • Haddish Melakeberhan
  • Jyotirmoy Dey

Keywords:

competition, glycine max, heterodera glycines, lesion nematode, meloidogyne incognita, nematode, pratylenchus penetrans, replacement, root-knot nematode, soybean cyst nematode

Abstract

Competition on soybean between Heterodera glycines (race 3) and Meloidogyne incognita or H. glycines and Pratylenchus penetrans were investigated in greenhouse experiments. Each pair of nematode species was mixed in 3-ml suspensions at ratios of 1,000:0, 750:250, 500:500, 250:750, and 0:1,000 second-stage juveniles or mixed stages for P. penetrans. Nematodes from a whole root system were counted and infection rates standardized per 1,000 nematodes (per replication) prior to testing the null hypothesis through a lack-of-fit F-test. Although the effect of increasing H. glycines proportions on the infection rate of M. incognita was generally adverse, the rate deviated significantly from a trend of linear decline at the 75% H. glycines level in one of two experiments. All lack-of-fit F-tests for the H. glycines and P. penetrans mix were significant, indicating that infection rates for both nematodes varied considerably across inocula. The infection rate of H. glycines decreased with increasing P. penetrans proportions. The rate of P. penetrans infection increased with increasing H. glycines proportions up to the 50% level, but declined at the 75% level. Competition had no effect on nematode development. The general adverse relationships between M. incognita and H. glycines and those between P. penetrans and H. glycines showed a linear trend. The relationship between H. glycines and P. penetrans indicates that the former may be competitive when present at higher proportions than the latter. In this study we have evaluated nematode competition under controlled conditions and provide results that can form a basis for understanding the physical and physiological trends of multiple nematode interactions. Methods critical to data analyses also are outlined.

Downloads

Published

2003-03-15

Issue

Section

Articles