Effect of Tropical Rotation Crops on Meloidogyne incognita and Other Plant-Parasitic Nematodes
Abstract
In a field experiment conducted on sandy soil in Florida during the 1993 season, rotation crops of castor (Ricinus communis), velvetbean (Mucuna deeringina), 'Mississippi Silver' cowpea (Vigna unguiculata), American jointvetch (Aeschynomene americana), 'Dehapine 51' cotton (Gossypium hirsutum), and 'SX-17' sorghum-sudangrass (Sorghum bicolor × S. sudanense) were effective in maintaining low population densities ( 12/100 cm³ soil) of Meloidogyne incognita race 1, whereas high population densities ( 450/100 cm³ soil) resulted after 'Clemson Spineless' okra (Hibiscus esculentus) and 'Kirby' soybean (Glycine max). Following a winter cover crop of rye (Secale cereale), densities of M. incognita following the six most effective rotation crops (1993 season) remained relatively low ( =32/100 cm³ soil) through midseason of an eggplant (Solanum melongena) crop planted in 1994, but increased by the end of the eggplant crop. The rotation crops planted during 1993 had little effect on yield of eggplant in 1994. Eggplant yield was inversely correlated with preplant densities (Pi) of Belonolaimus longicaudatus (r = -0.282; P = 0.10; 46 dr), but not with Pi of M. incognita. A separate microplot experiment conducted in 1994 revealed that final densities (Pf) of M. incognita race 1 following 13 different crop cultivars were lower (P = 0.05) than Pf following a 'Pioneer X304C' corn (Zea Nays) control, but only 'Mississippi Silver' cowpea and 'Sesaco 16' sesame (Sesamum indicum) resulted in lower (P = 0.05) Pf of Paratrichodorus minor than the corn control. It is critical that rotation crops intended for suppression of individual Meloidogyne spp. be evaluated for their response to other nematode pests as well. Key words: Aeschynomene americana, Belonolaimus longicaudatus, Criconemella spp., crop rotation, cropping system, eggplant, Glycine max, Gossypium hirsutum, Helicotylenchus dihystera, Hibiscus escutentus, Meloidogyne incognita, Mucuna deeringiana, nematode, nematode management, Paratrichodorus minor, Pratylenchus spp., Ricinus communis, Sesamum indicum, Solanum melongena, Sorghum bicolor, sustainable agriculture, Tagetes patula, Vigna unguiculata, Zea mays.Downloads
Published
Issue
Section
License
Copyright and Permissions
All material published by the Society of Nematologists (SON), except for papers prepared by United States and Canadian government employees, is copyrighted and protected under the U.S. copyright law. Under the Copyright Act of 1976, the term of copyright for materials registered by an organization is 75 years from the date first published. Before publishing any manuscript, SON requires that authors transfer full and complete ownership of any copyright to SON by signing a JON Page Charge/Copyright Form (.pdf). SON then registers the copyright. Subsequent use of published materials requires written permission from the SON and may be obtained by contacting the current Editor-in-Chief and state where and how the material will be used.
The author warrants that the article is an original work not published elsewhere in whole or in part, except in abstract form, and that the author has full power to make this grant. If portions of the article have been published previously, then the author warrants that permission has been obtained from the copyright holder and the author will submit a copy of the permission release with this copyright transfer form.
SON shall claim no proprietary right other than copyright. Authors and coauthors retain the right to revise, adapt, modify, or otherwise use all or part of the article in future works of the author(s), such as press releases, lectures, and reviews, provided that all such use is for the personal noncommercial benefit of the author(s). All patent rights are retained by the author(s).