Demonstration of Multiple Mating in Heterodera glycines with Biochemical Markers


  • A. C. Triantaphyllou
  • P. R. Esbenshade


Controlled crosses of Heterodera glycines were carried out by placing one o r more virgin females of known esterase phenotype on an agar plate and adding, at various time intervals, one or more males of different esterase phenotypes. Progeny (second-stage juveniles) of such crosses were propagated on soybeans, and 30 days later young females were subjected to electrophoretic analysis to determine their esterase phenotype. Esterase phenotypes that represented the heterozygous state of the maternal and paternal genomes confirmed the hybrid nature of the progeny and identified their male parent. When each of 74 females was given the opportunity to mate successively with two males of different esterase phenotypes, 43 mated with a single male and 31 mated with both males. One female mated with three males, i.e., with a male of its own population (sib mating) and the two males provided for the cross. Inseminated females could mate for a second time soon after, or as late as 24 hours after, their first mating. When single males were given the opportunity to mate with many females, about equal numbers of them inseminated zero, one, two, or three females. In greenhouse tests, 12 females were given the opportunity to mate with many males of three different esterase phenotypes. Two females mated with one and possibly more males of the same phenotype, and 10 females mated with males of two different esterase phenotypes. In conclusion, multiple mating appears to be a common behavior of males and females of H. glycines. Key words: biochemical marker, cross, electrophoresis, enzyme, esterase, Heterodera glycines, multiple mating, soybean cyst nematode.