Granite Rock Outcrops: An Extreme Environment for Soil Nematodes?


  • Erin Austin
  • Katharine Semmens
  • Charles Parsons
  • Amy Treonis


Anhydrobiosis, community structure, diversity, ecology, granite flatrock outcrops, Maturity index, nematode survival, primary succession


We studied soil nematode communities from the surface of granite flatrock outcrops in the eastern Piedmont region of the United States. The thin soils that develop here experience high light intensity and extreme fluctuations in temperature and moisture and host unique plant communities. We collected soils from outcrop microsites in Virginia (VA) and North Carolina (NC) in various stages of succession (Primitive, Minimal, and Mature) and compared soil properties and nematode communities to those of adjacent forest soils. Nematodes were present in most outcrop soils, with densities comparable to forest soils (P > 0.05). Nematode communities in Mature and Minimal soils had lower species richness than forest soils (P < 0.05) and contained more bacterial-feeders and fewer fungal-feeders (P < 0.05). Primitive soils contained either no nematodes (NC) or only a single species (Mesodorylaimus sp., VA). Nematode communities were similar between Mature and Minimal soils, according to trophic group representation, MI, PPI, EI, SI, and CI (P > 0.05). Forest soils had a higher PPI value (P < 0.05), but otherwise community indices were similar to outcrop soils (P > 0.05). Outcrop nematode communities failed to group together in a Bray-Curtis cluster analysis, indicating higher variability in community structure than the Forest soils, which did cluster together. A high proportion of the nematodes were extracted from outcrop soils in coiled form (33-89%), indicating that they used anhydrobiosis to persist in this unique environment.