Manipulation of Rhizosphere Bacterial Communities to Induce Suppressive Soils


  • Mark Mazzola


suppressive soils, biological control, replant disease, rhizobacteria.


Naturally occurring disease-suppressive soils have been documented in a variety of cropping systems, and in many instances the biological attributes contributing to suppressiveness have been identified. While these studies have often yielded an understanding of operative mechanisms leading to the suppressive state, significant difficulty has been realized in the transfer of this knowledge into achieving effective field-level disease control. Early efforts focused on the inundative application of individual or mixtures of microbial strains recovered from these systems and known to function in specific soil suppressiveness. However, the introduction of biological agents into non-native soil ecosystems typically yielded inconsistent levels of disease control. Of late, greater emphasis has been placed on manipulation of the cropping system to manage resident beneficial rhizosphere microorganisms as a means to suppress soilborne plant pathogens. One such strategy is the cropping of specific plant species or genotypes or the application of soil amendments with the goal of selectively enhancing disease-suppressive rhizobacteria communities. This approach has been utilized in a system attempting to employ biological elements resident to orchard ecosystems as a means to control the biologically complex phenomenon termed apple replant disease. Cropping of wheat in apple orchard soils prior to re-planting the site to apple provided control of the fungal pathogen Rhizoctonia solani AG-5. Disease control was elicited in a wheat cultivar-specific manner and functioned through transformation of the fluorescent pseudomonad population colonizing the rhizosphere of apple. Wheat cultivars that induced disease suppression enhanced populations of specific fluorescent pseudomonad genotypes with antagonistic activity toward R. solani AG-5, but cultivars that did not elicit a disease-suppressive soil did not modify the antagonistic capacity of this bacterial community. Alternatively, brassicaceae seed meal amendments were utilized to develop soil suppressiveness toward R. solani. Suppression of Rhizoctonia root rot in response to seed meal amendment required the activity of the resident soil microbiota and was associated with elevated populations of Streptomyces spp. recovered from the apple rhizosphere. Application of individual Streptomyces spp. to soil systems provided control of R. solani to a level and in a manner equivalent to that obtained with the seed meal amendment. These and other examples suggest that management of resident plant-beneficial rhizobacteria may be a viable method for control of specific soilborne plant pathogens.