Aseptic Culture Systems of Radopholus similis for In Vitro Assays on Musa spp. and Arabidopsis thaliana
Keywords:
alfalfa callus, arabidopsis thaliana, burrowing nematode, medicago sativa, method, musa (aaa), nematode, radopholus similisAbstract
Radopholus similis is one of the most damaging nematodes in bananas. Chemical control is currently the most-used method, but nematode control through genetic improvement is widely encouraged. The objective of this study was to establish an aseptic culture system for R. similis and determine whether R. similis can infect and reproduce on in vitro banana plantlets and in vitro Arabidopsis thaliana. In the study's first part, a suitable aseptic culture system was developed using alfalfa callus. Radopholus similis could penetrate and reproduce in the callus. Six weeks after inoculation with 25 females, the reproduction ratio was 26.3 and all vermiform stages were present. The reproduction ratio increased to 223.2 after 12 weeks. Results of a greenhouse test showed that R. similis did not lose its pathogenicity after culturing on alfalfa callus. In the study's second part, the infection and reproduction of the nematodes cultured on the callus were studied on both in vitro banana plantlets and A. thaliana. Radopholus similis infected and reproduced on both banana and A. thaliana. Furthermore, nematode damage was observed in the root systems of both hosts. These successful infections open new perspectives for rapid in vitro screening for resistance in banana cultivars and anti-nematode proteins expressed in A. thaliana.Downloads
Published
Issue
Section
License
Copyright and Permissions
All material published by the Society of Nematologists (SON), except for papers prepared by United States and Canadian government employees, is copyrighted and protected under the U.S. copyright law. Under the Copyright Act of 1976, the term of copyright for materials registered by an organization is 75 years from the date first published. Before publishing any manuscript, SON requires that authors transfer full and complete ownership of any copyright to SON by signing a JON Page Charge/Copyright Form (.pdf). SON then registers the copyright. Subsequent use of published materials requires written permission from the SON and may be obtained by contacting the current Editor-in-Chief and state where and how the material will be used.
The author warrants that the article is an original work not published elsewhere in whole or in part, except in abstract form, and that the author has full power to make this grant. If portions of the article have been published previously, then the author warrants that permission has been obtained from the copyright holder and the author will submit a copy of the permission release with this copyright transfer form.
SON shall claim no proprietary right other than copyright. Authors and coauthors retain the right to revise, adapt, modify, or otherwise use all or part of the article in future works of the author(s), such as press releases, lectures, and reviews, provided that all such use is for the personal noncommercial benefit of the author(s). All patent rights are retained by the author(s).