Effect of Mulch Surface Color on Root-knot of Tomato Grown in Simulated Planting Beds
Keywords:
host-parasite relationship, light quality, meloidogyne incognita, nematode, photomorphogenesis, plastic mulch, polyethylene, root-knot, tomatoAbstract
The effect of different-colored polyethylene mulches on quantity and spectra of reflected light, plant morphology, and root-knot disease was studied in tomato (Lycopersicon esculentum) grown in simulated planting beds. Tomato plants were inoculated with Meloidogyne incognita at initial populations (Pi) of 0, 1,000, 10,000, or 50,000 eggs/plant, and grown in a greenhouse for 50 days over white, red, or black mulch. Soil temperature was kept constant among the mulch treatments by placing an insulation barrier between the colored mulch and the soil surface. Soil temperature varied less than 0.5 ºC between soil chambers at solar noon. Tomatoes grown over white mulch received more reflected photosynthetic light and had greater shoot weights (27%), root weights (32%), and leaf area (20%) than plants grown over black mulch. Plants grown over red mulch received a higher far-red-to-red ratio in the reflected light. Mulch color altered the plant's response to root-knot nematode infection by changing the distribution of mass in axillary shoots. At high Pi, axillary leaf area and leaf weight were greater in tomato grown over white mulch than when grown over red mulch. The root-gall index was lower for plants grown over white mulch than similar plants grown over red mulch.Downloads
Published
Issue
Section
License
Copyright and Permissions
All material published by the Society of Nematologists (SON), except for papers prepared by United States and Canadian government employees, is copyrighted and protected under the U.S. copyright law. Under the Copyright Act of 1976, the term of copyright for materials registered by an organization is 75 years from the date first published. Before publishing any manuscript, SON requires that authors transfer full and complete ownership of any copyright to SON by signing a JON Page Charge/Copyright Form (.pdf). SON then registers the copyright. Subsequent use of published materials requires written permission from the SON and may be obtained by contacting the current Editor-in-Chief and state where and how the material will be used.
The author warrants that the article is an original work not published elsewhere in whole or in part, except in abstract form, and that the author has full power to make this grant. If portions of the article have been published previously, then the author warrants that permission has been obtained from the copyright holder and the author will submit a copy of the permission release with this copyright transfer form.
SON shall claim no proprietary right other than copyright. Authors and coauthors retain the right to revise, adapt, modify, or otherwise use all or part of the article in future works of the author(s), such as press releases, lectures, and reviews, provided that all such use is for the personal noncommercial benefit of the author(s). All patent rights are retained by the author(s).