Further Studies on the Role of Polyploidy in the Evolution of Meloidogyne


  • A. C. Triantaphyllou


Two tetraploid isolates of Meloidogyne hapla, 86P and E289P, with haploid chromosome numbers of 34 and 28, respectively, were studied cytogenetically and biologically in relation to the diploid populations, 86-Va (n = 17) and E289-Taiwan (n = 14), from which they had been originally isolated. Both isolates were quite stable, converting to diploidy at the low rate of about 2.5%. The tetraploid isolate 86P maintained itself in competition with its diploid counterpart in mixed cultures, although an initial frequency of 50% polyploidy was reduced to about 9% at the end of the sixth generation. Both tetraploid isolates could maintain themselves in greenhouse cultures without artificial selection for at least 2 years. Crosses between diploid females and tetraploid males resulted in a few triploid females that produced mostly nonviable eggs, suggesting partial reproductive isolation between the two ploidy forms. Ten generations of propagation of only polyploid females of isolate 86P that were associated with males failed to yield an obligatorily amphimictic isolate that would not convert at all to diploidy. If one accepts a previous assumption that the present day amphimictic root-knot nematodes are tetraploids derived from diploid ancestors, results of the present study are not inconsistent with an evolutionary trend toward an even higher level of ploidy in Meloidogyne, presumably octaploidy. Key words: cytogenetics, cytology, evolution, Meloidogyne hapla, parthenogenesis, polyploidy, northern root-knot nematode.