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Species-Specific Restriction Site Polymorphism in 
Root-knot Nematode Mitochondrial DNA 1 

THOMAS 0 .  POWERS, 2'4 E. G. PLATZER, 2 AND BRADLEY C.  HYMAN ~ 

Abstract: Research was initiated to physically characterize the mitochondrial  genomes of several 
Meloidogyne spp. and host-races, to address questions regarding their  systematics and dispersal, and 
to assess the possibility of  developing molecular diagnostics for these nematodes. Techniques were 
developed for purification and rapid detection of  mitochondrial  DNA from root-knot nematodes. 
Mitochondrial  DNAs among Meloidogyne spp. were demonstrated to exhibit  extensive divergence. 
T h e  potential for using the rapidly diverging mitochondrial  genomes as a diagnostic assay for M. 
incognita, M. hapla, M. arenaria, and M. javanica is discussed. 
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One important application of  contem- 
porary biotechnology is molecular diag- 
nostics, which involves the detection and 
quantitation of  specific genes by nucleic 
acid hybridization procedures. With the 
advent of  molecular cloning strategies, 
highly sensitive and specific DNA hybrid- 
ization probes can be constructed for de- 
tecting target organisms in crude, mixed 
sample populations. The  utility of  this ap- 
proach was demonstrated in the health sci- 
ences for the diagnosis of  viral, bacterial, 
and protozoan infections (2). This strategy 
now has been extended to identifying viral 
infections in agronomically important crops 
(5,8). The  experiments described here are 
intended to introduce this rapidly emerg- 
ing technology to the detection of  soil- 
dwelling, plant-parasitic nematodes and 
more specifically to the economically im- 
portant  root-knot nematodes. 

To  develop a reliable and rapid diag- 
nostic assay for root-knot nematode species 
and host races, we focused our attention 
on nematode mitochondrial DNAs (mt- 
DNAs). This small, extranuclear genome 
was selected for several reasons. MtDNA 
evolves rapidly; specific mitochondrial gene 
loci evolve 10 to 100 times faster than sin- 
gle copy nuclear genes resident in the same 
organism (1). Consequent ly ,  DNA se- 
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quence polymorphisms accumulate in the 
mtDNA, resulting in useful genetic mark- 
ers for population studies. In addition, 
mtDNA is usually present in eukaryotic cells 
as a highly amplified, small (15-20-kilo- 
base [kb]) circular molecule, thereby facil- 
itating isolation in preparative yields. We 
believe each of  these features will contrib- 
ute to the development of  a sensitive, pre- 
cise and rapid molecular assay for nema- 
tode species and possibly host races as well. 

Our objectives were to generate infor- 
mation on the isolation and characteriza- 
tion of  rntDNA from root-knot nematodes 
and to demonstrate dramatic sequence di- 
vergence among the mitochondrial ge- 
nomes of  different Meloidogyne species. 

MATERIALS AND METHODS 

Nematode isolates: All nematodes were 
maintained on tomato (Lycopersicon esculen- 
turn L. cv. Tropic) or pepper (Capsicumfru- 
tescens L. cv. Yolo Wonder) plants in the 
University of California, Riverside, green- 
house facilities. Original isolations were as 
follows: M. hapla from San Bernardino, 
Calif.; M. javanica from Indio, Calif.; M. 
arenaria from Riverside, Calif.;M. incognita 
races 1 and 3 from Riverside, Calif.; and 
races 3 (NCSU no. 108) and 4 from North 
Carolina. 

Isolation of mtDNA: Mitochondrial DNA 
was extracted from ca. 0.25 ml of  packed 
nematode eggs, obtained by the method of  
Hussey (3). Eggs were homogenized in a 
hand-held Dounce homogenizer for 5-10 
minutes in 5 ml MSB-EDTA-proteinase K 
(0.20 M mannitol, 0.07 M sucrose, 0.05 M 
tris-HC1, pH 7.5, 0.01 M EDTA, 200 # g /  
ml proteinase K). The  total homogenate 

~ a s  centrifuged at 4 C in 15-ml conical 
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tubes at 700 g for 5-7  minutes. The  su- 
pernatant was poured into 50-ml round 
bot tom tubes and centrifuged at 14,000 g 
for 20 minutes at 4 C to collect a crude 
mitochondrial pellet. The  pellet was sus- 
pended in 3 ml STE (0.1 M NaCI, 0.05 M 
tris-HC1, pH 8.0, 0.01 M EDTA, pH 8.0), 
to which 2-3  drops of  25% sodium dodecyl 
sulfate (SDS) was added, and the mixture 
was incubated at room temperature for 5 
minutes. CsCI and ethidium bromide were 
added to the lysate (6) and the mixture 
centrifuged to equilibrium (16-18 hours; 
50,000 rpm; Ti70.1 rotor) in a Beckman 
L8-70M ul t racen t r i fuge .  Superco i led  
mtDNA banded just below any contami- 
nating nuclear DNA. The  mtDNA band 
was withdrawn from the gradient, and the 
ethidium bromide was removed by repeat- 
ed extractions with isopropyl alcohol fol- 
lowed by 24:1 chloroform-isoamyl alcohol 
and dialyzed exhaustively in 0.01 mM tris, 
1 mM EDTA, pH 7.5. 

Nematode minilysates: T w e n t y  female  
nematodes were handpicked into a 1.8-ml 
microcentrifuge tube containing 50 t~l pro- 
teinase K (200 tzg/ml) and 1.0% SDS in 
MSB. The nematodes were manually dis- 
rupted and incubated at 65 C for 30 min- 
utes. The  lysate was treated with 5 tA 
RNAse (10 mg/ml)  for 30 minutes at 37 
C, phenol extracted, and DNA was con- 
centrated by ethanol precipitation. Cellu- 
lar DNA obtained in this fashion can be 
cleaved by all restriction enzymes tested. 

Root-knot spot blot: A single root  gall was 
hand homogenized in 100 ~1 reaction buff- 
er (as described for minilysates) and incu- 
bated at 65 C for 1 hour. The  crude lysate 
was spotted directly onto nitrocellulose fil- 
ters. The  filters were overlaid on 0.5 M 
NaOH,  1.5 M NaCI for 30 minutes, then 
neutralized with 0.5 M tris (pH 7.5), 3.0 M 
NaC1 and washed twice in 2 x SSC (0.3 M 
NaC1, 0.03 M Na citrate). Hybridization 
and autoradiography was conducted ac- 
cording to published procedures (4,7,9). 

Restriction analysis: Restriction enzymes 
were obtained from Bethesda Research 
Laboratories, Bethesda, Maryland, and 
used according to manufacturer 's recom- 
mendat ions .  Res t r ic t ion  digests were  
fractionated on 0.7-1.0% agarose gels. 
Electrophoresis was conducted in tris-bo- 
rate-EDTA buffer (6); DNA was stained by 

ethidium bromide (0.5 gg/ml)  and visual- 
ized on a Fotodyne ultraviolet transillu- 
minator. 

Hybridization: DNA fractionated in agar- 
ose gels was transferred to nitrocellulose 
filters (9). We prepared s2P-labeled Meloi- 
dogyne incognita (race 1) mtDNA, labeled in 
vitro by nick translation according to Rig- 
by (7). DNA-DNA hybridization and au- 
toradiography were carried out as de- 
scribed by Hyman et al. (4). Hybridization 
was carried out at 65 C for 36 hours fol- 
lowed by two washes in 4 x SSC for 45 min- 
utes at 65 C and two washes in 2 x SSC, 
0.1% SDS for 45 minutes at 65 C. Filters 
were exposed to X-ray film for 24 hours, 
using a DuPont Cronex intensifying screen. 

RESULTS 

MtDNA isolation: We successfully iso- 
lated intact mtDNA from several Meloido- 
gyne spp. in preparative yields, using both 
whole nematode lysates and purified egg 
preparations. However,  because of  the ab- 
sence of  contaminating carbohydrate (that 
co-purifies with mtDNA in our isopycnic 
gradients), mtDNA was most efficiently 
isolated from nematode eggs. The  yield 
from 0.25 ml packed eggs was generally 
10-30 gg purified mtDNA. 

Restriction enzyme analysis: MtDNA was 
prepared from Meloidogyne incognita (race 
1), M. hapla, M. arenaria, and M. javanica. 
Each preparation was independently di- 
gested with several different restriction en- 
zymes. Res t r ic t ion  f r agmen t  po lymor-  
phisms were easily observable among the 
four Meloidogyne spp. (Figs. 1, 2). MtDNA 
from four Meloidogyne spp. were digested 
with the restriction enzymes HindIII  or  
HindIII  plus HincII (Fig. 1). Several fea- 
tures are notable in these digestions. M. 
hapla (Fig. 1, lanes 2, 6) does not share 
common restriction fragments with the 
other three species. The  mitochondrial ge- 
home of this M. hapla isolate must have 
diverged from the other Meloidogyne spp. 
Digestion with numerous additional re- 
striction enzymes confirms this observa- 
tion (unpubl.). M. javanica, M. incognita (race 
1), andM. arenaria (Fig. 1, lanes 3-5) share 
two lower molecular weight HindIII  di- 
gestion products. However,  the largest 
HindIII  fragment differs slightly in mo- 
bility between these species. This fragment 
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Fzo. 1. Restriction endonuclease digestion of Me- 
loidogyne spp. mtDNA. Lane 1: Lambda DNA stan- 
dard digested with HindIII. Lanes 2-5: M. hapla, M. 
javanica, M. incognita (race 1), M. arenaria mtDNA 
digested with HindIIL Lanes 6-9: Same mtDNA sam- 
ples digested with a combination of HindIII  and 
HincII. The  DNA preparations were electrophoret- 
ically fractionated on a 0.7% gel and visualized by 
ethidium bromide staining. 

is ca. 16 kb pairs in size, largest in M. ja- 
vanica (Fig. 1, lane 3) and smallest in M. 
arenaria (lane 5). The  difference in mobil- 
ity of this fragment may indicate slight dif- 
ferences in total genome size. Lanes 6-9 
are mtDNA from the same species cut with 
a combination of HindIII  and HincII. 
Again the divergence of the mitochondrial 
genome of  M. hapla from the mtDNA of  
the other  species is evident (Fig. 1, lane 6). 
By cleaving the DNAs with HindIII  plus 
HincII, the subtle differences between M. 
javanica, M. incognita, and M. arenaria be- 
come accentuated. The  highest molecular 
weight fragment in HindIII  digestion is 
now cleaved by HincII, resulting in two 
fragments of  ca. 10.0 and 6.0 kb (Fig. 1, 
lanes 7-9). The  mobility of the largest of  
these two fragments is diagnostic for these 
three Meloidogyne spp. In M. javanica, it ap- 
pears that a second HincII site fur ther  re- 
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Fxo. 2. Restriction endonuclease digestion of Me- 
loidogyne slop. mtDNA. Lane 1: Lambda DNA stan- 
dard digested with HindIII. Lanes 2-5: M. hapla, M. 
javanica, M. incognita (race 1), M. arenaria mtDNA 
digested with HinfI. The  DNA samples were electro- 
phoretically fractionated on a 0.7% agarose gel and 
visualized by ethidium bromide staining. 

duces the size of  the second high molecular 
weight fragment (Fig. 1, lane 7). 

Figure 2 displays mtDNA from the same 
Meloidogyne spp. cut with the restriction en- 
zyme HinfI. HinfI recognizes considerably 
more restriction sites in these genomes and 
therefore produces fragments of a smaller 
average size. More than 12 fragments are 
generated in these digestions. At this level 
of  resolution, an even greater number of 
fragment differences are revealed between 
34. javanica, 34. incoffnita, and M. arenaria 
(Fig. 2, lanes 3-5). 

Spot-blots: To demonstrate the feasibility 
of  using mtDNA-based diagnostic probes 
for the rapid detection ofMeloidogyne spp., 
galls from infected tomato plant roots were 
isolated and gall macerates prepared by 
di.gestion with proteinase K. Samples (con- 
raining a mixture of plant host and nema- 
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tode DNAs) were spotted directly onto 
nitrocellulose filters and hybridized with 
32P-labeled M. incognita (race 1) mtDNA. 
Strong hybridization signals were obtained 
with as little as 1 #1 macerate from M. ar- 
enaria or M. javanica infected roots (Fig. 
3). No hybridization was observed with the 
M. hapla preparation. This observation is 
consistent with results derived from com- 
parative restriction digestions which indi- 
cates a high degree of  divergence between 
these mitochondrial genomes. However,  
cross-hybridization was observed between 
the M. incognita mtDNA probe and DNA 
within M. arenaria and M. javanica gall 
macerates (Fig. 3, lanes 1 and 2) or purified 
mtDNA control samples (lanes 3 and 4) 
obtained from these same Meloidogyne spp. 
This cross-hybridization is most likely the 
result of  conserved mtDNA sequences 
within the mitochondrial genome of  these 
three species. 

Analysis of M. incognita host-races using 
nematode minilysates: We recently devel- 
oped a rapid procedure to isolate total cel- 
lular DNA from one or very few nematode 
specimens. The  DNA obtained by this pro- 
cedure is suitable for digestion by restric- 
tion enzymes. Using our nematode mini- 
lysate technique, we screened mtDNAs 
from M. incognita host races for restriction 
site polymorphisms. Total cellular DNA 
was isolated from nematodes of  three host 
races and subjected to cleavage by HindIII  
or EcoRI. After fractionation by agarose 
gel electrophoresis, the DNA was trans- 
ferred to nitrocellulose filters and hybrid- 
ized with 3~P-labeled M. incognita mtDNA 
to visualize the mtDNA component  of  total 
nematode cellular DNA. The autoradi- 
ogram presented in Figure 4 reveals that 
the mtDNAs from host races 1, 3, and 4 
generate a similar but  not identical restric- 
t ion pa t t e rn  with these  two enzymes.  
Treatment  with additional enzymes has 
further demonstrated that some differ- 
ences between host races exist. The  extent 
of  these differences is currently under in- 
vestigation. 

DISCUSSION 

In order to assess the feasibility of  con- 
structing diagnostic root-knot nematode 
molecular probes, we have begun to study 
the physical and genetic organization of  

arenaria 

hapla 

1 2 3 4 

javanica 

FIG. 3. Diagnostic root-knot spot blot. Crude r o o t  
macerate, prepared from Meloidogyne spp. galled root 
as described in text, was spotted onto a nitrocellulose 
filter. Lanes 1 and 2 contain 1 and 5 tA, respectively, 
of  gall macerate. Lanes 3 and 4 contain 8 and 40 ng 
of purified mtDNA from each Meloidogyne spp., as 
noted. Samples were denatured in situ with NaOH 
and hybridized with ~*P-labeled M. ~ncognita (race 1) 
mtDNA. M. incognita (race 1)-infected root macerates 
generated strong hybridization signals when tested in 
parallel experiments (data not presented). 

mitochondr ia l  genomes  f rom several  
species and host races of  the genus Meloi- 
dogyne. O f  these species, M. incognita is con- 
sidered to be the most common and most 
destructive. We present here information 
on the isolation, analysis, and detection of  
Meloidogyne mtDNA. 

Our initial studies revealed that mt- 
DNAs from M. incognita, M. arenaria, M. 
hapla, and M. javanica have diverged to a 
sufficient ex ten t  that  several  po lymor-  
phisms were revealed by the first two en- 
zymes employed. Size variations in gener- 
ated fragments were diagnostic for species 
and indicated that refined probes for in- 
dividual Meloidogyne spp. could be gener- 
ated. Preliminary sizing of  the mtDNA re- 
striction products revealed a mitochondrial 
genome size of  approximately 20 kb, with- 
in the size range common among most an- 
imal mtDNAs. 

It is not surprising that root-knot nema- 
tode species can be identified on the basis 
of  their mtDNA restriction patterns. Giv- 
en the length of  time that these species 
probably have been reproductively iso- 
lated (10) and the rapid evolution of  
mtDNA (1), there should be considerable 
accumulation of  restriction site polymor- 
phism. For the purposes of  developing re- 
liable diagnostic probes, however, it will be 
necessary to identify divergent regions of  
species-specific mtDNA. These regions can 
then be incorporated into suitable cloning 
vectors and used as diagnostic molecular 
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FIG. 4. Restriction enzyme analysis of Meloidogyne incognita host races using minilysates. Twenty females 
were subjected to the rapid lysis procedure as described. The total cellular DNA samples so obtained were 
digested with EcoRI (lanes 1-5) and HindIII (lanes 6-10). Digests were electrophoretically fractionated on 
a 0.7% agarose gel, transferred to nitrocellulose paper, and hybridized with s2p-labeled M. incognita race 1 
mtDNA. Lanes 1, 6: Race 3 DNA from California. Lanes 2, 7: Race 3 DNA from North Carolina. Lanes 3, 
8: Race 4 DNA from North Carolina. Lanes 4, 9: Race 4 DNA from North Carolina, obtained from a crude 
gall macerate. Lanes, 5, 10: Race 1 from California. 

probes.  With  the advent  o f  nonradioac t ive  
labels, deve lopmen t  o f  field kits for  rapid  
identification o f  species is envisioned. Since 
mult iple probes  may be used and hundreds  
o f  samples sc reened  simultaneously,  the  
t ime and expense  o f  diagnosis will be  con- 
siderably lessened. 

MtDNAs f r o m individual M. incognita 
host  races were  also subjected to res t r ic t ion 
analysis. In contras t  to the  po lymorphisms  
de tec ted  a mong  Meloidogyne spp., less di- 
ve rgen t  banding  pa t te rns  were  gene ra t ed  
a m o n g  the th ree  host races tested,  sug- 
gesting that  host-race deve lopmen t  is a rel- 
atively r ecen t  evolu t ionary  event .  More  de- 
tailed studies using n u m e r o u s  enzymes will 
be  r equ i r ed  in o r d e r  to f u r t h e r  address di- 
ve rgence  among  host  races. I t  may be nec- 
essary to incorpora te  S1 nuclease t reat-  
ments,  m t D N A  heteroduplexing,  and DNA 
sequencing to address f ine-s t ructure  vari- 
at ion a mong  host  races. 

T h e  types o f  analyses p re sen ted  h e r e  
demons t ra te  the  utility o f  using m t D N A  
(as a " r e p o r t e r " )  for  n e m a t o d e  diagnostics. 
T h e  highly amplified na tu re  o f  m t D N A  in 
n em a to d e  ceils enabled  us to obtain a 
p rominen t  hybridizat ion signal in two types 
o f  mixed sample prepara t ions .  Specific hy- 
br idizat ion to m t D N A  was easily observed  
in D N A  t ransfer  exper iments  using Meloi- 
dogyne minilysates, where  n em a to d e  chro-  
mosomal  D N A  was present  in vast excess 
over  mtDNA.  T h e  sensitivity o f  o u r  hy- 
bridizat ion p r o c e d u r e  is also exempli f ied  
by the spot-blot exper iments  where  nema- 
tode  m t D N A  was identif ied in c rude  gall 
macerates  that  con ta ined  plant host cel- 
lular DNA in addi t ion to n e m a t o d e  chro-  
mosomal  and mtDNA.  

T h e  exper iments  p re sen ted  he re  rep-  
resent  a small n u m b e r  o f  possible field sam- 
ples. N u m ero u s  addit ional  isolates need  to 
be co m p a red  to assess intraspecific varia- 
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t i on .  I n  a d d i t i o n ,  i t  wil l  b e  i m p o r t a n t  to  
assess a n y  c o r r e l a t i o n  o f  i n t r a s p e c i f i c  var i -  
a t i o n  wi th  v a r i a t i o n s  in  n e m a t o d e  p a t h o -  
gen i c i t y .  
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