Nodulation of Soybeans as Affected by Half-root Infection with Heterodera glycines


  • M. P. Ko
  • K. R. Barker
  • J. S. Huang


A split-root technique was applied to soybean, Glycine max (L.) Merr. cv. Lee 68, to characterize the nature of the nodulation suppression by race 1 of the soybean cyst nematode (SCN), Heterodera glycines. Root-halves of each split-root plant were inoculated with Rhizobium japonicum, and one root-half only was inoculated with various numbers of SCN eggs. Nodulation (indicated by nodule number, nodule weights, and ratio of nodule weight to root weight) and nitrogen-fixing capacity (indicated by rate of acetylene reduction) were systemically and variously suppressed on both root-halves of the split-root plant 5 weeks after half-root inoculation with 12,500 SCN eggs. Inoculation with 500 eggs caused this suppression only on the SCN-infected (+NE) root-half; nodulation on the companion uninfected (-NE) root-half was stimulated slightly. The +NE root-halves inoculated with 5,000 eggs were excised at 2-week intervals; nodulation on the remaining -NE root-halves was not different from that of the noninoculated control when measured 6 weeks after the SCN inoculation. Thus, the systemic suppression of nodulation was reversible upon the removal of the SCN. Similarly, application of various levels of KNO[sub3] to the -NE root-halves of the split-root plant did not alleviate the suppressed nodulation on the companion +NE root-halves, even though plant growth was much improved at certain levels of nitrogen (125 [mu]g N/g soil). This indicated that the localized suppression of nodulation by SCN was caused by factors in addition to poor plant growth. Key words: soybean cyst nematode, Rhizobiura japonicum, Glycine max, nitrogen fixation, split-root technique.