Ultrastructural Changes Caused by Fusarium oxysporum f. sp. lycopersici in Meloidogyne javanica Induced Giant Cells in Fusarium Resistant and Susceptible Tomato Cultivars


  • F. Fattah
  • J. M. Webster


Tomato (Lycopersicon esculentum Mill.) seedlings, susceptible (cv. Pearson A-I Improved) and resistant (cv. Pearson Improved) to race 1 Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyd & Hans., were inoculated with Meloidogyne javanica (Trueb) Chitwood second-stage juveniles and 3 weeks later with race 1 F. oxysporum f. sp. lycopersici spores. One week after fungal inoculation, no fungus was visible in root tissue of the tomato cultivars and the giant cells were normal. Two weeks after fungal inoculation, abundant hyphae were visible in xylem tissues of Fusarium-susceptible but not of Fusarium-resistant plants. In susceptible plants, giant cell degeneration occurred, characterized by membrane and organelle disruption. In addition, where hyphae were in direct contact with the giant cell, dissolution of the giant cell wall occurred. Three weeks after fungal inoculation, fungal hyphae and spores were visible inside xylem tissues and giant cells in Fusarium-susceptible plants and in xylem tissue of the resistant plants. In susceptible and resistant plants, giant cell degeneration was apparent. Giant cell walls were completely broken down in Fusarium-susceptible tomato plants. In both cultivars infected by Fusarium, giant cell nuclei became spherical and dark inclusions occurred within the chromatin material which condensed adjacent to the fragmented nuclear membrane. No such ultrastructural changes were seen in the giant cells of control plants inoculated with nematode alone. Giant cell deterioration in both cultivars is probably caused by toxic fungal metabolites. Key words: root-knot nematode, Fusarium oxysporum f.sp. lycopersici, histopathology, giant cell, ultrastructure, disease complex.