Inhibition of Syncytia Formation and Root-knot Nematode Development on Cultures of Excised Tomato Roots

Authors

  • D. Orion
  • W. P. Wergin
  • B. Y. Endo

Abstract

Two different defined growth media were used to culture aseptically the root-knot nematode, Meloidogyne incognita, on excised roots of tomato, Lycopersicon esculentum cv 'Marglobe.' One of these media, STW, was a formulation by Skoog, Tsui, and White and the other, MS, a formulation by Murashige and Skoog. From 1 through 4 weeks, inoculated tissues were fractured to observe root infection, giant-cell formation, and nematode development with the scanning electron microscope (SEM). Four weeks after inoculation, the fresh weights of roots and developmental stages of nematodes were recorded. SEM observations indicated that roots cultured on the STW medium had normal growth and infection sites with galls that supported the development of mature females by 4 weeks. Roots cultured on the MS medium were less vigorous and had infection sites with galls containing only one to four syncytialike cells that did not support the development of mature females. Eighty percent of the larvae infecting roots cultured on the MS medium failed to develop into mature females. To determine which factor(s) affected root growth and nematode development, inoculated and uninoculated roots were grown on media consisting of different combinations of the organic and inorganic fractions of the STW and MS formulations. These experiments indicated that the organic fraction of STW was essential for normal root growth; however, the inorganic fraction of MS inhibited normal gall formation and nematode development. Further testing of the inorganic fractions revealed that the high concentration of ammonium nitrate in the MS medium was a factor that inhibited giant-cell formation and nematode development. Key Words: ammonium inhibition, Meloidogyne incognita.

Downloads

Published

1980-07-15

Issue

Section

Articles