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ABSTRA C T |
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A numerical model for non-linear dispersive monochromatic wave propagation is developed in this work. The
new model has a unified form, being valid in shallow as well as in intermediate water. The approach is based
on the expansion of the vertical velocity in power series and on an analytical solution of the Laplace equation.
It has a similar form with two types of the Boussinesq equations but instead of the constant coefficient 1/3 (or
1/15) in the momentum equation it is proposed a function of the water depth and the wave period. The continuity
equation, which is exact in deep, intermediate and shallow water without any restriction in nonlinearity, remains
unchanged. In the momentum equation terms of order up to Otes?)—with e=H/d, o=d/L (H=wave height,
d=water depth, L=wave length)—are considered. The horizontal and the vertical velocity as well as the pressure
distribution are given in relation to the wave period and the instantaneous depth averaged horizontal velocity.
The model is validated both in intermediate and shallow water against the non-linear theory and experimental
data.

ADDITIONAL INDEX WORDS: Numerical model, wave theory, Boussinesq equations.

INTRODUCTION

The last years a considerable number of numerical water
wave models have been developed based on Boussinesq
equations. Boussinesq equations are derived from Euler
equations after their integration over the depth and the
assumption of moderately long waves. They are capable to
simulate the propagation of non-linear dispersive waves in
shallow water. Thus it is possible to describe the combined
effects of numerous wave phenomena such as shoaling, re-
fraction, reflection, and diffraction as well as breaking
wave propagation (ABBOTT et al., 1978, 1984, MADSEN and
WARREN, 1983, KARaMBAS and KouTiTAs, 1992).

Two important scaling parameters are associated with the
analysis of dispersive wave theory. One is the non-linearity
parameter € defined as the ratio of wave height to the water
depth, e=H/d. The other ¢? is the square of the ratio of the
depth d to a characteristic horizontal length of the surface
profile (usually taken equal to the wave length L), o2=(d/L)2.
In shallow water € becomes important taking values of order
1 near the breaking point.

The most usual form of Boussinesq equation (PERE-
GRINE, 1967, 1972), hereinafter referred to as classical, is
based on the assumption that € and o2 are small, O(e)x1
and O(o2)<1, and that € is of the same order as o2 For
horizontal bottom the equations are written:
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where U is the mean over the depth velocity and { the
surface elevation and h=d+(.

Good results may be obtained using the system of equa-
tions (1) and (2), with the help of an accurate numerical
scheme, without the need of inclusion any additional non lin-
ear terms (YASUDA et al., 1982, KARAMBAS et al., 1990, KAR-
AMBAS and KouTiTas, 1992).

The value of the dispersion parameter o2 is generally sup-
posed to be small. In deeper water ¢ becomes important and
Boussinesq equations are not valid. For linear waves
(O(e)=0) the dispersion relation derived from equations 1 and
2 (PEREGRINE, 1972) is:

, gdk?
T T (kd/3 @
where o = 27/T and k = 2n/L.

Equation (3) agrees with the exact analytical expression
from Airy wave theory (w?=gk tanh kd) for small values of
kd. Greater values of kd give significant variations of (3) from
exact linear relation. Thus Boussinesq equations are restrict-
ed to shallow water, with a phase speed error of about 4%, if
the limit is extended to d/Lo=0.2 (Lo is the deep water
length). On the other hand a system of equations valid at any



A Unified Model for Waves 129

water depth is the time dependent mild slope equation (ITO
and TaNIMOTO, 1972, COPELAND, 1985, WATANABE and MA-
RUYAMA, 1986). However, the linear form of the equations is
a significant disadvantage.

WiTTING (1984) proposed a different form of the Boussi-
nesq equations with improved linear dispersion characteris-
tics, introducing a new velocity variable to replace the bottom
horizontal velocity. Similarly, MADSEN et al. (1991), Nwocu
(1993), STEFFLER and JIN (1993) and SCHAFFER and MAD-
SEN (1995), proposed a different approach with improved lin-
ear dispersion characteristics. The new dispersion relation
(especially in the latter work) has much smaller discrepancies
from the exact linear one, but the two expressions are not
identical. In addition the horizontal velocity (u) and pressure
(p) distribution over the depth are still parabolic as in the
classical Boussinesq equations (PEREGRINE, 1972). In the
above models nonlinear terms of order O(ec?) have been ne-
glected and the equations are limited to describe weakly non-
linear wave popagation. WEI et al. (1995) proposed a fully
nonlinear extension of Nwoau (1993) equations with signif-
icant improvement in the results concerning solitary wave
shoaling and undular bore propagation.

The numerical solution of the above Boussinesq equations
(both classical and extended) is based on third-order accuracy
Finite Difference schemes (ABBOTT ef al., 1984, KARAMBAS
et al., 1990, NwocGu, 1993, WEI and KirBy, 1995).

This work describes an extension of Boussinesq equations
in deeper water for monochromatic, non-linear dispersive
waves. An extension to irregular waves will be presented in
a forthcoming work. The resulting equations are in the same
form as equations (1) and (2) but the coefficient ¥4 in the dis-
persion term is replaced by a coefficient A which is a function
of the period T and the total depth h. The vertical distribution
of the vertical and horizontal velocities as well as pressure
are also derived during the procedure. The new equations are
formulated in section 2, the numerical solution is presented
in section 4 and the results in section 5.

DERIVATION OF THE EQUATIONS
The Exact Governing Equations

The continuity equation (1), in terms of the elevation { and
the mean over the depth horizontal velocity U, is an exact
relation valid in deep, intermediate and shallow water, for
non-linear waves, without any restriction in non-linearity.

Another exact relation, derived from the dynamic free sur-
face boundary condition, is the “conservation of the velocity”
law, given by McDoNALD and WITTING (1984):

9q. J |p, u? + w?
— = —-——|=+ gl - ——— + uq. (4)
at ax|p 2
where q. = u_ + a{/ox w,, u_and w_, the horizontal and ver-
tical velocity at the surface respectively and p_ the pressure
at the surface.

The conservation of the velocity law reduces to Bernoulli’s
equation evaluated at the wave surface for irrotational flow
i.e. the dynamic boundary condition (McDoNALD and Wir-
TING, 1984).

The kinematic boundary condition at the surface is ex-
pressed by:
ag ag

w=—+u— forz=7{ (5)
at 0x

and the boundary condition at the bottom:
=0 forz= —d (6)

Finally, considering the velocity potential &, the Laplace
equation is written:

2 2
2o T _

. (7)
ax? dz?

where for irrotational flow u=0d¢/0x and w=ad/dz.

A Series Expansion and Approximations

A method of derivation of the Boussinesq equations in shal-
low (PEREGRINE, 1972) and in deeper water (NwoGu, 1993)
is based on the assumption that w varies linearly over the
depth. This is not valid in intermediate water where a hy-
perbolic cosine variation must be used. In this paragraph the
vertical variation of w should be expressed in terms of the
mean over the depth horizontal velocity U based on an ana-
lytical solution of the Laplace equation.

Let’s assume the following expansion of the vertical veloc-
ity w in a power series of d + z:

(d +2)? (d + z)? aU
PR, R0 B R R T G 2T e (8)
h h? ax
with A, + A, + A, + ... =1.
Equation (8) satisfies the boundary conditions:
=0 forz= —d
and since A, + A, + A, + ... =1:
U ) 0\ 0\ )
w = —h(f:ié-ka—éz£+u\_f—g for z = (
Jx at ax at ax

using continuity equation (1) and supposing that Ud{/
dx=u_d{/dx. That should be, as far as the non-linear order of
equation is concerned, a restriction of the present derivation
(see the scaling analysis in the next paragraph).

EacLESON and DEAN (1966) used the method of separation
of variables for the solution of the Laplace equation. They
assumed that the velocity potential ¢ is written in a the prod-
uct form:

d(x,z,t) = X(x) Z(z) T(t)

where X(x), Z(z) and T(t) are functions of x, z and t respec-
tively, and derived the following solution:

dix,z,t) = X(x) (C e + D e k) T(t) 9)

where C and D are constants and k the wave number.
Their periodic solution (of the linear Laplace equation) for
linear progressive waves based on four separate elementary
combinations of the above solution (9) with different X(x) and
Tit) functions and the same Z(z) function. However equation
(9) can be reached without using the small amplitude as-
sumption. The same conclusion i.e. the distribution Z(z) is
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also valid for non linear waves, is pointed out also by Kins-
MAN (1984, p. 249) who derived a Stokes 3rd order theory
based on equation (9). The next approach is based only on
the z-dependent part Z(z) of the solution (9).

The application of the boundary condition (7) gives:

& = Eekdcosh k(d + z) (10)
with E = 2 X X(x)DT(t) for the velocities, u and w:

J
w = 2 _ KEewssinh kid + 2)
Jz
] oE
u + ﬁ = —e*dcosh k(d + z) (1
ax [3).¢

After the integration over the depth of u in (11), to derive
U, it can be easily found that:

- sinh k(d + z)oU

= — (12
v sinh kh  ax ’
which is similar to equation (8).
In terms of power series of d + z (12) becomes:
_( kh d+2) (kh)*  (d + z)* N au (13)
v smhkh 1 Blsinh kh hr 7 )ax

The comparison of (13) with (8) gives the expression of the
coefficient A :

(kh)
A, = ————— fi =1,3,5,17,...
"~ Wsinh kh O "
A =0 forn=24,6,8, ... (14)
with A, + A, + A, ... = 1, as had been supposed.

Scaling Analysis

The traditional way in the derivation of Boussinesq-type
equations is to integrate the local momentum equations over
the depth (PEREGRINE, 1967, NwocGu, 1993). A more direct
derivation has been proposed by Me1 (1983) who derived the
equations using the free surface surface boundary condition.
In the next a similar procedure is adopted.

In order to make more clear to what order in € and o the
approximations are being made a non-dimensional form of
the equations is derived. The dependent and independent
variables are scaled as follows (NwoaGu, 1993):

Hce

t" = tL/ " =u—
c u uy

HL
C=H W= e

= wog with ¢ = (gd)

here “'” indicate temporarily a dimensional variable.

Equation (13) is based on an analytical solution of the La-
place equation which is adequate for a third order Stokes
non-linear wave theory (KiNsMAN, 1984, p. 248-251) (in the
case of linear waves is valid for arbitrary o? in intermediate
and shallow water). In (13) the following approximation is
also adopted:

Ual/o,=u dl/a,

Using the above definitions the kinematic boundary con-
dition at the surface can be expressed in nondimensional
form (see also Nwoau, 1993):

or, using continuity equation (1):

. aU _ a
w, = —c*(1 + €)— + ec*(u, — U)—
' ax ’ 0x

(15)

From to the works of PEREGRINE (1972) and MET (1983, p.
508) it can be easily derived that:

u, — U = Olo?)

Thus, by replacing U with u, in the above, the error is of
order Ofeo*). This error is introduced through equation (8) in
the form of Boussinesq equation proposed here.

The flow is supposed to be irrotational, so:

ow _ du

ax 75;

Replacing w from equation (8) or (13) into the above we
have, after integrating with respect to z:

+2)? + 2
= U — ¢? (Al(d z + A (d+ 2 + )

2 *4d + el)?

Sl e[ Ay
€l 6 20

a*U

ax*

(16)

The horizontal velocity u_ at the surface is given by:
9°U
w = U — o*Ad + e0*— (17)
ax?

with A = A/3 + A5 + AJT ...
Equation (4) is expressed in nondimensional form as:
_du, ) A% A
g2— + eotw, — €gi———
at Taxot dx ot

,9C L dug aw,
o?—= — ec?u, + ew — (18)

ax ax T ox

containing only terms of order O(e), O(o?) and O(ea?).

The substitution of equations (15) and (17) into equation
(18) retaining terms up to Ote), O(a?) and O(ec?), leads to the
derivation of the momentum equation:

U U 9
=4 EU(’— + i
at IxX 09X

33U U aUa2U
:(rz(d+e§)2A_( — + €0*Ald + €0 U— — — —
ax2at ax?  9x 0x?
g o*U
+eozid + e (19)
dx dxot

In a dimensional form is written:
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Figure 1. Variation of coefficient A with d/Lo (linear waves).
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with h=d+¢.

The above equation is similar to the Serre equation (SER-
RE, 1953, MEI, 1983, DINGEMANS, 1997).
The coefficient A is given by:

A=A/ + A/ +AJT. ..

where A, is calculated from (14) and k from the linear wave
theory. Thus A is a function of the depth h and the period T
(Figure 1, for linear waves). For depths smaller than half of
the deep water length, a correct estimation of A requires less
than seven terms of the sum. In shallow water kh - O, A —
1/3 and equation (20) becomes identical to the classical Serre
equation. Retaining terms up to O(e) and O(a?) equation (20)
becomes identical to the classical Boussinesq equation (2).

The velocity distribution (eq. 16) is written in dimensional
variables:

20.00 |
{

19.00
] /

18.00 *‘

17.00 — =4

1/B

16.00 -

]500 ‘ T [ T ‘ } T ‘\"" T ]
0.00 0.10 0.20 0.30 0.40 0.50
d/Lo

Figure 2. Variation of coefficient B with d/Lo (linear waves).
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Figure 3. Sinusoidal wave propagation, using a linear version of the
model i.e. excuding non-linear terms.

(d + 2z)? (d + z)*
-U - + S
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The pressure distribution, although is not used in the pres-
ent derivation, is obtained considering the z-momentum
equation (see NowoaGu, 1993):

ow ow Jdw  dp
— tu—+w
ot ax 0z 0z
By substituting equation (13) into the above and integrat-
ing with respect to z:

~—— Model

] Stokes 3rd order theory

d/Lo=0.4 H/Lo=0.1

C(m)
<o
/

, N
0.0 .
S
™~
i s
\\\“
Ad—— T T T T T T
0.00 0.10 0.20 0.30 0.40 0.5
x/L

Figure 4. Surface elevation of a non-linear wave in intermediate water:
Comparison with Stokes II1 theory (d/Lo = 0.4, H/d = 0.25).
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Figure 5. Surface elevation of a non-linear wave in intermediate water:
Comparison with the Stokes III theory (d/Lo = 0.3, H/d = 0.333).

02U
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(d + z)? d + z)*
F(d+z)~(A1 2 4z +)

+ A.
9 ®  4h?
1 1
- hz(A, AL )
2 4

In shallow water, where A, —» 1 and A,;, — 0, both dis-
tributions become identical to the parabolic ones. obtained by
PEREGRINE (1972) for the classical Boussinesq equations.

Uneven Bottom

For the case of an uneven bottom we also need an expres-
sion for the vertical velocity w(z). Adopting the same power

—— Model
0.80 — Stream Function Theory
0.40 d/Lo=0.17 H/L0=0.086
T i
N
\\
0.00 N
} ~
] ey,
e
'(),4() ! T T T T T T ‘} '7;
0.00 0.10 0.20 0.30 0.40 0.5

x/L

Figure 6. Surface elevation of a non-linear wave in shallow water: Com-
parison with the Stream Function theory (d/Lo = 0.17, H/d = 0.5).

——  Model
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0.40 —
o |
L W)

0.00 - \\\

-0.40 T T . e

0.00 0.10 0.20 0.30 0.40 0.50

x/L

Figure 7. Surface elevation of a non-linear wave in shallow water: Com-
parison with the Stream Function theory (d/Lo = 0.032, H/d = 0.45).

expansion as the case for an horizontal bottom (i.e. equation
(8)) we have:

G(d + z)
wiz) =w, +(w, — w)————,
h
d + z)?
Gd +2) = A, + z) + AJ(TZ) + ... (21)
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g
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Figure 8. Vertical distribution of the horizontal velocity u(z) in inter-
mediate water: Comparison with the Fourier theory.
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Figure 9. Wave shoaling on a 1:34.26 slope. Comparison between model
results and experimental data by Buhr Hansen and Svendsen (1979). Test
no A10112 (H = 70 mm and frequency F = 1 Hz).

where the coefficients A, are given from the equation (14) and
w, and w, are the vertical velocities at the bottom and surface
respectively:

w, = —o?du, forz =1¢

o

in which d, is the bottom slope (a slowly-varying bathymetry
is assumed) and u, is the horizontal velocity at the bottom

(given by equation (16) for z = — d), and
J
w, = UZ(h_—U + de) for z = —d (22)
ax
with h = d + €l

Using again the continuity equation (1) and supposing, as
in the previous paragraph, that Ual/ox=u_00/0x, equation (22)
becomes:

|
2.50 ———  Model Ho/L0=0.0045

[ | Experimental data

1.00 —

0.50 ‘L I T 1 \

0.50 1.00 1.50 2.00 2.50
x/Lo

Figure 10. Wave shoaling on a 1:34.26 slope. Comparison between model
results and experimental data by Buhr Hansen and Svendsen (1979). Test
no 041041 (H = 40 mm and F = 0.4 Hz).
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Figure 11. Comparison between model results and experimental data
(Stive, 1983) of free surface elevation at the point x = 32.5 m. Test 1 (H
= 1451 cm and T = 1.79 sec).

il d
w, = 02(,—‘: + U%> = (r2<(?—c + ug—g)
’ at ax at 0x

In this way equation (21) satisfies both the bottom and the
surface boundary conditions.

In the next we follow the same procedure as in the case for
horizontal bottom. The flow is supposed to be irrotational, so:

Jw _ du
0x a9z

Replacing w from equation (21) into the above we have,
after integration with respect to z:

|
-————  Model

0.20 1 B

Experimental data

-0.40 0.00 0.40
t/T

Figure 12. Comparison between model results and experimental data
(Stive, 1983) of free surface elevation at the point x = 32.5 m. Test 2 (H
= 1443 cm and T = 3.0 sec).
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Figure 13. Comparison between model results and experimental data
(Stive, 1983) of horizontal velocity distribution under the crest at the
point x = 32.5 m. Test 1 (H = 14.51 cm and T = 1.79 sec).

uz) = U - 02% (Al(d . 2F 4 Ag(d4122)4 - )
(e
. (Al,x(d ;z)2 . As,x(d:hzZ)4 . )
(A al .)]
—(rzde<Az+A(d:;—Z)3 )
~aeen(ag-ado
— o2d, " O'de%g (23)

where the subscript x denotes a partial derivative and D is

given by:

aU U-u
+d

D=
9x * h

where U — u, = O(a?)
The horizontal velocity at the surface is written:
d(AD 1 3 ou, 1
u=U-oh?®2 g pp(ateade. |42l
ax 2 4 ox 2

(24)

The substitution of equations (22) and (23) into equation
(18), retaining terms up to O(e), O(g?) and O(ec?), leads to

———  Model

0.10 — [ ] Experimental Data

0.00 —
E 4
N
0.10
020 —

! \ I
0.00 20.00 40.00 60.00 80.00 100.00
u (cm/s)

T

Figure 14. Comparison between model results and experimental data
(Stive, 1983) of horizontal velocity distribution under the crest at the
point x = 32.5 m. Test 2 (H = 14.43 cm and T = 3.0 sec).

the derivation of the momentum equation over uneven bot-
tom (in variables with dimension):

oU oU ad

— + U_ g_(’

ot X 0x

oU
92 AE’
X g 2 2
:h2—+Ah2(Uﬁ._Ea[(j)+ %GU
axat ax? 0x 0x* ax 9xdt
U 1 3 9%u, 1
+ d,h A-+ A=+ ... |+ 2 —
) axat( 2 T ) Ixat 2
9°U 3 1 a¢ U
+th A—+A-+... —=—
( 2 T ) 2|t S @

As mentioned before, in the previous derivations a slowly-
varying bathymetry is assumed and consequently terms with
d,, and (d,)? have been ignored.

A Different Form of the Equations

MADSEN et al. (1991) derived a new form of the Boussinesq
equations by adding a small quantity of order O(ec?, o*) to
the momentum equation (2) (see also SCHAFFER and MAD-
SEN, 1995). Based on the same procedure, but using the non-
linear long wave equation instead of the linear one, we con-
sider:

E+ U—+% O(o0?)
at Ix  ox

which leads to the following small quantity:
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Figure 15. Comparison of numerical results and experimental data for wave heights on measured transects of Berkhoff et al. (1982).
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az(U(£>
93U ﬂ . Jx

_BUZdZ — = Ef
ox%0t  o9x’ ax?

= O(c?) (26)

with B a coefficient. The above small quantity differs from
that used by MADSEN et al. (1991) by the non linear term
ea?(UU,),, (because in the present work terms of order O(eg?)
are not neglected). The quantity is added to (25) (in which
terms of order O(c*) have been neglected) resulting to a new
form of Boussinesq equations. The same procedure was also
adopted by SCHAFFER and MADSEN (1995) in order to derived
another form of the equations.
The momentum equation is now written in the form:

oU oU ¢
T
at ax 0x

az(Af’,”)
e +Ah2(Uﬂ _ MU)

d% 22U
axat ax? X 0x? aX X0t
U [ 1 3 2u, 1
Fa bl K= & A4 | 4220
axot 2 4 oxot 2
02U 1 3 1 ar au
+d,hU—|[A=+AS+. . |+2|+d ==
T ox? ( 2 ) 2| ox at
oU
62<U(3_>
#°U 9 X
ox2ot ax? 0x?

Following the same procedure the two-deminsional form of
the equations is obtained:

U, + UVU + gV¢
= h2V(AVU), + Ah2(UV3U — VUV?U) + dV({VU,

1 3
' -+ A+ ...+ =
+ Vdh|VU, (A12 A, i ) Vu.,,‘z
, 1 3 1
+ Vdh Uvzu(Al5 + A:;Z + ) ot VdV{VU
+ Bd2(V2U, + gV3( + V2UVU) (28)

In order to obtain the same linear dispersion relation with
that corresponding to equation (20) the following procedure
is adopted for the estimation of the coefficient B. The com-
parison of the momentum equation (20) (including linear
terms only) and the above equation (27) leads to:

B+ %) dU, +Bgd{, = AdU,,

where F, = dF/ox.

Replacing (.., and U_, from linear wave theory (since only
linear terms of order O(c?) are involved) the value of B is
given by the relation:

xxt XXX

A-1/3

B =~ Akar

(29)

In the next the above form of the momentum equation
should be used in the numerical computations. The reason

which led us to a such a transformation of the original equa-
tions is outlined below. Applying equation (27) in deep water,
the wave energy is propagated into the model without the
significant dispersive behaviour of the front which is present
in the classical form (equation 25)—see also MADSEN et al.,
(1991). In addition, in periodic non linear waves propagating
in shallow water over a constant depth, higher harmonics are
bounded and travel with the velocity of the basic wave and
since coefficient A is a function of the first harmonic only,
equation (25) can be used. In the contrary when a first order
boundary condition in shallow water is applied or the waves
travel over slopes and bars, more higher harmonics are gen-
erated propagating as free components (CHAPALAIN et al.,
1992, DINGEMANS, 1993). In this case equation (27) is used,
which can provide significant improvement of the dispersion
relation of the higher free harmonics (MADSEN and SOREN-
SEN, 1993) with respect to the equation (25), while using
equation (29) for B (instead of the constant value 1/15) the
propagation of the first harmonic is still predicted accurately.

Figure 2 shows the variation of 1/B with the ratio d/Lo, for
linear waves. For small values of d/Lo (and kd) 1/B — 15 as
proposed in MADSEN and SORENSEN (1992).

In this way the new type of equations becomes similar to
the MADSEN et al. (1991) and NwocGu (1993) models, with
the new value of B, valid for monochromatic only waves.
Since the two dispersion relations corresponding to the new
versions of the Boussinesq equations (eq. 25 and eq. 27) are
also identical and equal to the exact linear one (see the next
paragraph), the new model has now a more accurate form as
far as the linear dispersion characteristics are concerned.

The models proposed by MADSEN et al. (1991) and NwoGu
(1993), have the advantage of being able to simulate irregular
wave propagation in intermediate water. The present model
can also be used for the simulation of non monochromatic
waves adopting a mean period for the calculation of B. In this
case the value of B should be between 1/15 and 1/18.6 (Figure
2).

RANGE OF APPLICATION OF THE NEW
EQUATIONS

The only difference between the new system of equations
and the classical type of Serre equations is the coefficient A
(and B) in the linear dispersion term. It is reminded here that
the whole procedure is based on a solution of the linear La-
place equation which gave the distribution of the vertical ve-
locity w. As a result the linear dispersion relation correspond-
ing to equation (25):

. gdk?

= — (30
1 + A(kd)? )
Substitution of the values of A in (30) yields:

gkkd sinh kd
kd = (kd)? = (kd)
+

w? =

+ —
31! 53! 75!

sinh kd + ( + .. .)(kd)2

or
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. gk sinh kd B ksinh kd T
T T kA (kdy - B sk B
14— 4ty
2! 4!
(31)

the well known relation from Airy linear theory.

Thus, as far as the linear dispersion properties are con-
cerned, the equations are exact.

In the proposed set of non-linear equations the continuity
equation, which is exact in deep, intermediate and shallow
water without any restriction in non-linearity (i.e. to all or-
ders of € and ¢?), remains unchanged. The equations are de-
rived keeping terms of order up to O(es?) in the momentum
equation. Considering the above derivation, as a deep water
limit of the validity of equations can be considered the prac-
tical deep water limit i.e. the half of the wave length, d/L. =
0.5. For a near breaking wave in intermediate water, say o
= d/L = 0.5, the value of € is about € = 0.28 (considering a
breaking limit H/L. = 0.14) and the product eo? = 0.07 (a
small quantity). Thus the derived set of equations is able to
simulate non-linear dispersive wave propagation in inter-
mediate and shallow water.

NUMERICAL SOLUTION

The numerical method is based on a third order accuracy
scheme, the principles of which have been described by Kar-
AMBAS et al. (1990) and KARAMBAS (1991). In the next only
the differences between to present numerical code and the
existing one will be emphasized.

The partial derivatives of the set of equations (1) and (24)
can be approximated using central finite differences both in
space and time:

" . F:‘ (i F:‘ 1

B 2Ax

aF

" Fr'-Fr' R
a|,

2At ax

where F is the velocity U or the elevation (.

In order to overcome the numerical dispersion and dissi-
pation some correction terms have to be included in the F.D.
integration. These terms are detected by the Taylor series
expansion of the significant terms:

n

aF|" Frt - Frt At2aF
a| 24t 6 ot
aF("  F», — Fr,  Ax2o°F
i | Pt R (R B (32)
x|, 2Ax 6 ax*

In the existing numerical schemes the above correction terms
have been transformed with the help of the linear long wave
equations to be similar to the dispersion term (see also AB-
BOT et al., 1984). Obviously since linear long wave equations
are not valid in deep water, these should not be used here.
Instead of this the simplified form of the time-dependent
mild-slope equation (COPELAND, 1985) is used together with
the linear continuity equation:

E <k Sa_é = ()

ot d ax

J oU

_—C +d—=0 (33)
at ax

Based on the above equations and following the same method
for the transformation of the truncation errors the new cor-
rection terms become:

<;sz . ng) oL

6 6 /ox?*at
d Ax? At?\ 0*U

oL i (34)
cz 6 6 Jox?at

in the right hand side of the continuity and momentum equa-
tion respectively.

As in ABBOT et al. (1984) bottom slope effects are not sig-
nificant and are ignored in the correction terms. The exten-
sion in a two-dimensional case (see also NEVES and SiLva,
1988) can be easily introduced adopting a full form of the
equations (33).

In shallow water, where ¢ = (gd)"?, equation (33) reduces
to the linear long wave equation, and the numerical scheme
becomes identical to the one for classical Boussinesq equa-
tions. In this way the numerical scheme also maintains the
unified form of the system of equations, i.e. their validity both
in intermediate and shallow water. In the last region, for val-
ues of Ax near d, the correction terms are very important
since they are generally of the same order as the non hydro-
static dispersion term of the Boussinesq momentum equa-
tion. In deeper water the value of Ax is much smaller than
the value of d and the correction terms become less impor-
tant.

For the 2-D cases exactly the same numerical scheme is
used (Karambas, 1991) instead of an ADI algorithm in order
to have a symmetric treatment of all variables with respect
to x and y. The resulting linear system of equations is solved
using a predictor-corrector technique (MATSOUKIS, 1986).

The model is driven at the open boundary by a time func-
tion of the free surface {/(t). The open boundary condition
allows for the reflect wave to be radiated out of the compu-
tational domain (HAUGEL, 1980, KARAMBAS, 1992):

~d+0Un+cid+0=(1—-uncit (35

where n is the unit vector normal to the boundary (positive
outwards) and u, is the unit vector of the propagation direc-
tion.

At the outgoing wave boundary (perfectly absorbing or par-
tial reflection) the sponge layer technique is applied.

The above numerical solution is evaluated, as far as the
numerical dispersion errors are concerned, for its ability to
propagate a linear wave with correct celerity. The results
from the propagation of a sine wave over a constant depth in
deep water is presented in Figure 3 using a linear version of
the model i.e. excluding the non linear terms. The wave is
propagated a long distance without significant changes in its
height and its celerity, illustrating in this way the small nu-
merical dispersion error which is introduced in the numerical
solution.
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APPLICATION

The aim of this study was not to develope a model to re-
place the non-linear wave theory but to improve the existing
numerical models extending their validity in deeper water.
However in order to test the computational model a compar-
ison with non-linear theories and experimental data is pre-
sented. Stokes 3rd order theory for intermediate water and
Stream Function theory for intermeuiate and shallow water
are chosen for the comparison.

Figures 4 and 5 show a comparison of the model results
with Stokes III theory concerning the prediction of the sur-
face elevation { in intermediate water: d/Lo=0.4 and d/
Lo=0.3. The input at the western boundary is a time serie of
the surface elevation {, using Stokes III theory. Stokes II1
waves may not be consistent with the derived equations.
However it is a solution valid to indermediate water, close to
the nonlinear order which is considered here. In addition
with the use of the theory, suppression of the free higher
harmonics is obtained. In this way, the well-known spatial
variations in wave properties are avoided. After several wave
lengths of propagation in a channel with horizontal bottom
the instantaneous wave profile, from x = 15L to x = 15.5L,
is compared with Stokes III theory. The non-linearity is cho-
sen to be important: H/d = 0.25, H/d = 0.333, and in both
cases H/L==0.10. The numerical results agree reasonably well
with the theory. In shallow water the model is tested against
Stream Function Theory (CHAPLIN, 1980). At the western
boundary a cnoidal wave is used as input and the comparison
is made at the position x = 15L to x = 15.5L. The comparison
between model results and theory is presented in Figures 6
(d/Lo = 0.17, H/d = 0.5) and Figure 7 (d/Lo = 0.032, H/d =
0.45).

Another significant numerical experiment (Figure 8) is the
comparison of the vertical distribution of the horizontal ve-
locity u(z), as predicted by equation (16), with the Fourier
non-linear theory (HUuANG, 1990). The model predicts well the
u distribution over the depth confirming also the validity of
the coefficients A, upon which the present model has been
developed.

In the next the propagation of non-linear dispersive waves
over uneven bottom will be considered. Model results are
compared with three different experimental set of data. In
the first experiment, by BUHR HANSEN and SVENDSEN
(1979), the transformation of non-linear waves over a sloping
plane bottom is investigated. The experiments were made in
a wave flume 60 cm wide and 32 m long. In the upstream
part of the flume with horizontal bottom the depth was 36
cm. The toe of the beach was 14.78 m from the wave gener-
ator and the slope was 1:34.26. Test no A10112 (H = 70 mm
and frequency F = 1 Hz) and 041041 (H = 40 mm and F =
0.4 Hz) are reproduced. In Figures 9 and 10 the model results
(wave height) are compared with experimental data. The re-
sults agree very well with measurements.

Experimental data for the second comparison are obtained
by STIVE (1983). The experiments were conducted in a wave
flume 1 m wide and 55 m long. The basic set-up consisted of
a plane beach of 1:40 slope. The toe of the beach was 16 m
from the wave generator (x = 16 m) and the water depth in

n’

the horizontal section was 0.70 m. Two tests are reproduced:
test 1 (H = 14.51 cm and T = 1.79 sec) and test 2 (H = 14.43
cm and T = 3.0 sec). Surface elevation and horizontal velocity
(under the crest) measurements at the point x = 32.5 m, in
the shoaling region, are compared with model results in fig-
ures 11, 12, 13 and 14. The model is seen to predict well both
surface elevation { and velocity distribution u(z).

Finally, the 2D version of the model is applied to study
wave propagation over a coplicated geometry used by BERK-
HOFF et al. (1982). This experiment is a standard test for
verifying models based on mild-slope equation. Monochro-
matic waves with period 1 sec and height H = 4.64 ¢cm are
generated by a wavemaker at y = — 10 m. The experimental
topography consists of an elliptic shoal resting on a plane
sloping bottom with a slope 1:50. The plane slope rises from
a region of constant depth d = 0.45 m (d/Lo = 0.288, i.e.
intermediate water) and the entire slope is turned at an angle
of 20° to a straight wave paddle. The slope is described by: d
=045 mfory < —5.82mandd = 0.45 - 0.02(5.82 + y')m
for y’ > —5.82 m (x' and y' are the slope-oriented coordi-
nates). The boundary of the shoal is given by (x'/4)? + (y'/3)?
= 1 and the thickness of the shoal is d = —0.3 + 0.5(1~(x'/51?
— (y'/3.75)2)2

Wave heights along eight sections near the shoal were mea-
sured in the experiment. Figure 11 shows the comparison of
experimental data and model results. The agreement is rea-
sonably good.

Runs of the above three tests without the additional non
linear Serre terms, of order O(ec?), in the equations (27) and
(28) were also made. The agreement was generally good but
not as good as seen using these terms. The differences are
more significant in the shoaling test by BUHR HANSEN and
SVENDSEN (1979) and in the 2DH propagation over the shoal.
The need of inclusion additional terms is also pointed out by
WEeI and KirBy (1995) and WEI ¢t al. (1995).

CONCLUSIONS

A new form of two types of the Boussinesq equations has
been presented in this work with corrected dispersion char-
acteristics for monochromatic waves only. Considering non-
linear waves, the new equations are now valid both in inter-
mediate and shallow water keeping a unified form. Using the
mean over the depth horizontal velocity as the velocity vari-
able the continuity equation, which is exact to all orders of e
and ¢?, remains unchanged. In the momentum equation non-
linear terms of order up to O(es?) are considered.

The distribution of the velocities w, u and pressure p (based
on an analytical solution of the Laplace equation) are not
similar to those of classical Boussinesq equations as derived
in PEREGRINE (1972) and mainly used by many researchers
(i.e. parabolic u(z) and p(z)).

The proposed model is tested against analytical solution
and experimental data. The wave height in shoaling region,
the surface elevation profile and the horizontal velocity dis-
tribution are predicted very well. Thus the new model can be
used for the simulation of the non-linear wave propagation
in intermediate and shallow water.
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