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A numerical model for non-linear dispersive monochromatic wave propagation is developed in this work. The
new model has a unified form, being valid in shallow as well as in intermediate water. The approach is based
on the expansion of the vertical velocity in power series and on an analytical solution of the Laplace equation.
It has a similar form with two types of the Boussinesq equations but instead of the constant coefficient 1/3 (or
1/15) in the momentum equation it is proposed a function of the water depth and the wave period. The continuity
equation, which is exact in deep, intermediate and shallow water without any restriction in nonlinearity, remains
unchanged. In the momentum equation terms of order up to O(Eu:Z)-with E-=H/d, u=d/L (Hv-wave height,
d=water depth, L=wave lengthl-are considered. The horizontal and the vertical velocity as well as the pressure
distribution are given in relation to the wave period and the instantaneous depth averaged horizontal velocity.
The model is validated both in intermediate and shallow water against the non-linear theory and experimental
data.
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where w = 21T/T and k = 21T/L.
Equation (3) agrees with the exact analytical expression

from Airy wave theory (w 2 = gk tanh kd) for small values of
kd. Greater values ofkd give significant variations of(3) from
exact linear relation. Thus Boussinesq equations are restrict­
ed to shallow water, with a phase speed error of about 4%, if
the limit is extended to dlLo=0.2 (Lo is the deep water
length). On the other hand a system of equations valid at any

(3)

(2)

(1)

gdk 2

1 + (kd)2/3
w2

a~ a(Uh)
-+--=0
at ax

au au a~ d 2 (r~u
- + u- + g- = ---
at ax ax 3 ax 2at

where U is the mean over the depth velocity and ~ the
surface elevation and h=d +~.

Good results may be obtained using the system of equa­
tions (1) and (2), with the help of an accurate numerical
scheme, without the need of inclusion any additional non lin­
ear terms (YASUDA et al., 1982, KARAMBAS et al., 1990, KAR­

AMBAS and KOUTITAS, 1992).
The value of the dispersion parameter (J2 is generally sup­

posed to be small. In deeper water (J2 becomes important and
Boussinesq equations are not valid. For linear waves
(O(E)=O) the dispersion relation derived from equations 1 and
2 (PEREGRINE, 1972) is:
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The last years a considerable number of numerical water
wave models have been developed based on Boussinesq
equations. Boussinesq equations are derived from Euler
equations after their integration over the depth and the
assumption of moderately long waves. They are capable to
simulate the propagation of non-linear dispersive waves in
shallow water. Thus it is possible to describe the combined
effects of numerous wave phenomena such as shoaling, re­
fraction, reflection, and diffraction as well as breaking
wave propagation (ABBOTT et al., 1978, 1984, MADSEN and
WARREN, 1983, KARAMBAS and KOUTITAS, 1992),

Two important scaling parameters are associated with the
analysis of dispersive wave theory. One is the non-linearity
parameter E defined as the ratio of wave height to the water
depth, E= Hid. The other (J2 is the square of the ratio of the
depth d to a characteristic horizontal length of the surface
profile (usually taken equal to the wave length L), (J2=(d/L)2.
In shallow water E becomes important taking values of order
1 near the breaking point.

The most usual form of Boussinesq equation (PERE­

GRINE, 1967, 1972), hereinafter referred to as classical, is
based on the assumption that E and (J2 are small, O(E)~l
and O«(J2)~1, and that E is of the same order as (J2. For
horizontal bottom the equations are written:
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where for irrotationa l flow u =acjJ/ax a nd w=acjJ/az .

a"cjJ a"<!>
- + - = 0
ax " az"

F inall y, considering th e velocity potential cjJ , the Laplace
equat ion is written:

The kinematic boundary condit ion at the su r face IS ex­
pressed by:

(8 )

(6 )

(5)
iiS as

w = - + u - for z = y
iit ' ax ~

aU as as ils as
w = - h- = - + u- == - + u - for z = s

ax at ax at ' ax

with A l + A" + A , + . . . = 1.
Equation ( 8) sa t is fies th e boundary condit ions :

w = 0 for z = - d

(
(d+z)" Id + z )" ) au

w = - A lld + z) + A ,- -- + A,--- + ... -
- h ' h" ax

a nd s ince Al + A" + A , + . .. = 1:

and th e boundary condit ion at the bottom:

w = ° for z = - d

A Serie s Expansion and Approximation s

A method of derivation of the Boussinesq equa t ions in shal ­
low IPI<;HEGRINE, 1972 ) a nd in deep er water IN wOGu , 1993)
is ba sed on th e ass umpt ion that w varies linea rly over the
depth . Thi s is not valid in intermediate water where a hy­
perbolic cos ine variation mu st be used . In thi s paragraph the
verti ca l variation of w shou ld be expressed in term s of the
mean over t he depth horizo ntal ve locity U based on a n ana­
lyti cal solu t ion of th e Lapla ce equation .

Let 's a ssume th e following expansio n of the vertical veloc­
ity w in a power ser ies of d + z:

water dep th is th e time depend ent mild slop e equation IIr o
and TANIMOTO, 1972, COPI<; LAND, 1985, WATANABEa nd MA­
RUYAMA, 1986l. However, th e linear form of the equat ions is
a s ign ifica nt disadvantage.

WITTING (1984 ) proposed a different form of t he Boussi­
nesq equations with improved linea r dispersio n characteris­
tic s , introduci ng a new velocity vari ab le to replace the bottom
horizontal velocity . Simi la rly, MADSEN et al . (1991), NWOGU
(1993), STI<;FFLI<;R a nd JI N (1993) and SCHAFFI<;R and MAD­
SEN (1995), propo sed a different approac h with improv ed lin­
ea r dispers ion characteristics . The new di spersion rela t ion
(es pecia lly in th e la t te r work ) has much smaller discrepa ncies
from the exact linea r one , but t he two express ions are not
identical. In a ddit ion th e hor izontal velocity IU) and pressure
(p ) distribution over the depth are sti ll parabolic as in the
classica l Bous si nesq equations IPE REGRINE, 1972). In the
above models nonli nea r terms of order OIHT") ha ve been ne­
glected a nd the equations are limited to des cribe weakly non­
linear wave pop agation . W~; I et al. (1995) propo sed a fu lly
non linear extension of Nwoo u (1993) equa t ions with s ign if­
ica nt improvement in th e results concer ning solita ry wa ve
shoa ling a nd undula r bore propagation .

Th e numerical solut ion of th e above Bouss inesq equat ions
I both class ica l and exte nded ) is based on third-ord er accuracy
Finite Difference schemes IABBO'\-!' et al ., 1984, KARAM BAS
et al ., 1990, Nwoou , 1993, WEI and KIHBY, 1995),

Thi s work de scribes a n extension of Boussinesq equa t ions
in deeper water for monochromatic, non-linear disp ersiv e
wav es . An exten sion to irregular wav es wi ll be presented in
a forthcoming work . Th e re sulti ng equa t ions a re in the same
form as equa t ions (1 ) and ( 2) but the coefficient V1 in th e dis­
pers ion term is replaced by a coefficient A whi ch is a fun ction
of the period T a nd the total depth h . The vert ica l di stribution
of the vertical a nd hor izon tal velocities as well as pr essu re
a re a lso derived during the procedure. Th e new equa tions are
form ula ted in se ct ion 2, th e numerica l solu t ion is pr ese nted
in sect ion 4 and th e resul t s in section 5.

141

cjJlx ,Z,tJ = XIx ) Zlz ) TIt )

wh ere XIx ), Z(z ) a nd TIt ) a re fun ctions of x, z a nd t respec­
tively , a nd derived th e following solut ion:

usin g continuity equation (1) a nd su ppos ing that Uasl
ax==u))slax. Th at shou ld be, as fa r a s th e non- lin ear ord er of
eq ua t ion is conce rned , a rest r ict ion of the present der iva t ion
(see th e scaling a na lys is in th e next paragraph ).

EAGLESON a nd DI<;AN (1966 ) used th e method of sepa ra t ion
of va r ia bles for t he solut ion of the Laplace equation . They
ass ume d th at the velocity pot entia l cjJ is written in a th e prod­
uct form :

( 9 )<!>lx, z,tI = XIX) (C eb + D e k,) TIU

The continuity equat ion 11 ), in terms of the eleva t ion s a nd
the mean over th e depth hor izonta l ve locity U, is a n exa ct
relation valid in deep , intermediate and s ha llow wa ter. for
non-linear wav es , witho ut any res t ricti on in non-linearity.

Another exact relation, derived from t he dyn a m ic free s u r­
fa ce boundary cond ition , is the "conse rva t ion of t he velocit y"
la w, given by McDONALD and WITTING (J984):

iiq_ a [p_ u; + w; ]
- = - -;- - + gS - + UA
at dx p 2

The Exact Governing Equations

DERIVATION OF THE EQUATIONS

wh ere q, = u, + as/aX w" u, and W " th e hor izonta l a nd ver ­
ti cal velocit y a t th e surface respectively a nd p, the pr essure
a t th e su r face .

The conservat ion of the velocity law red uces to Bernoull i's
equa t ion eva lua te d at the wave su r fa ce for irrotationa l flow
i.e. t he dynamic bound ary condit ion IMcDoNALD and WIT­
T I ~G , 1984 I.

whe re C a nd D a re cons tants and k th e wav e number.
Th eir periodic solu t ion 101'the linear La place equati on) for

lin ea r progressiv e wav es based on four se pa ra te eleme nt a ry
combination s of th e a bove solut ion (9) with different XIX) a nd
TIt! functi on s and the sa me Ztz) functi on . However equation
(9) ca n be reached without using the sm a ll amplitude as­
su m pt ion . The same concl us ion i.e . th e di stribution Z(z) is
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also valid for non linear waves, is pointed out also by KINS­

MAN (1984, p. 249) who derived a Stokes 3rd order theory
based on equation (9). The next approach is based only on
the z-dependent part Z( z) of the solution (9).

The application of the boundary condition (7) gives:

<t> = Eekdcosh k(d + z )

with E = 2 X X(x)DT(t) for the velocities, u and w:

(10)

Using the above definitions the kinematic boundary con­
dition at the surface can be expressed in nondimensional
form (see also NWOGu, 1993):

a~ a~
w. = (J:2- + E(J:2 U - for z = E J

~ at "ax ';,

or, using continuity equation (1):

a<t>
w = - = KEekdsinh krd + z)

az

au a~
w, = -(J:2(1 + E~)- + E(J:2(U - u)-

~ ax" ax
(15)

a<t> aE
u + - = -ekdcosh kt d + z)

ax ax
(11 ) From to the works of PEREGRINE (1972) and MEl (1983, p.

508) it can be easily derived that:

The comparison of (13) with (8) gives the expression of the
coefficient An:

(16)

u~ - U = O((J:2)

aw au

ax az

Replacing w from equation (8) or (13) into the above we
have, after integrating with respect to z:

[(
(d + z):2 (d + Z)4 )

U = U - (J:2 A] + A'l + ...
2 . 4(d + E~):2

(
A A )]a~u- (d + E~)~ ~ + ~ + . .. -
6 20 ax 2

Thus, by replacing U with u, in the above, the error is of
order O(E(J4), This error is introduced through equation (8) in
the form of Boussinesq equation proposed here.

The flow is su pposed to be irrotational, so:

(14)

(12)

for n = 2, 4, 6, 8, ...

1, as had been supposed.

An = 0

A = (kh r:
n n!sinh kh for n = 1, 3, 5 7, , ...

with Al + A:~ + A;:, ...

After the integration over the depth of u in (11 ), to derive
U, it can be easily found that:

w = _h sinh k(d + z)au
sinh kh ax

which is similar to equation (8).
In terms of power series of d + z (12) becomes:

(
kh (d + z) (kh)" (d + z )" )au

w = -- ------ + + ... - (13)
sinh kh 1 3!sinh kh h" ax

»-n
u =U-(T~A(d+EJ)~- (17)

" ~ ax 2

containing only terms of order O(E), O(y2) and O(E(J2),
The substitution of equations (15) and (17) into equation

(18) retaining terms up to O(E), O(y~) and O(E(J~), leads to the
derivation of the momentum equation:

a~ au., aw-;
-(J:2- - E(J~U - + EW - (18)

ax ., ax " ax

with A = A]/3 + A;/5 + A;/7 ...
Equation (4) is expressed in nondimensional form as:

au, a2~ a~ aw
(T2_-; + E(y2 W ,- - + E(y2__"

at ~ axat ax at

The horizontal velocity u, at the surface is given by:

t ' = tL/c

I cHL
w = w-- with c = (gd)I/:2

d:2

Z' zd

~' = ~H

x' xL

Scaling Analysis

The traditional way in the derivation of Boussinesq-type
equations is to integrate the local momentum equations over
the depth (PEREGRINE, 1967, NWOGu, 1993). A more direct
derivation has been proposed by MEl (1983) who derived the
equations using the free surface surface boundary condition.
In the next a similar procedure is adopted.

In order to make more clear to what order in E and <T the
approximations are being made a non-dimensional form of
the equations is derived. The dependent and independent
variables are scaled as follows (NwOGu, 1993):

u ' = u Hc
d

here "'" indicate temporarily a dimensional variable.
Equation (13) is based on an analytical solution of the La­

place equation which is adequate for a third order Stokes
non-linear wave theory (KINSMAN, 1984, p. 248-251) (in the
case of linear waves is valid for arbitrary (J:2 in intermediate
and shallow water), In (13) the following approximation is
also adopted:

au aU a~
-+EU-+-
at ax ax

a:~U ( a:IU »u a~u)= (y:2(d + E~)2A-- + E(y~A(d + E~)2 U----
ax 2at ax:l ax ax~

a~ a~U
+ E(J2(d + E~)--- (19)

ax c1xat

ua~/ax~u-;a~/ax In a dimensional form is written:
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Figu re 1. Vari ation of coefficient A with dlLo (linea r waves ).

-2.00 --+--.--r---r--,---- -,----,----,--.-- r---.

Figu re 3. Sinu soida l wave propagati on, using a linear version of the
model i.c. excuding non-linear terms.

Th e pressure distribution, a lthough is not used in th e pr es­
ent derivation, is obtained considering th e z-momentum
equation (see NOWOGu , 1993):

ilw ilw aw ap
- + u - + w - + - + g = 0
ilt ax ilz ilz

By substi tut ing equa tion (13) int o th e above a nd in tegra t ­
ing with respect to z:

[(
(d + Z) 2 (d + z)" )

U - Al 2 + A34(d + S)2 + . . .

_ (d + s)z(A,
+ As + . . .) ]ilZU

6 20 ilx2

20001600800 1200
x (rn)

400o

u -

A = A/ 3 + A/ 5 + A/7 . . .

where An is calcula te d from (14) and k from the linear wave
th eory. Thus A is a function of th e depth h a nd the period T
(Figure 1, for lin ear waves). For depths smaller th an half of
the deep water length , a correct est imation of A requires less
th an seven te rms of th e sum. In shallow water kh ---7 0 , A ---7

1/3 and equa tion (20) becomes ide ntical to the classical Serre
equat ion. Retaining term s up to 0 (10) a nd 0 (a 2 ) equa t ion (20)
becomes identical to th e classical Boussinesq equat ion (2).

Th e velocity distribution (eq. 16) is written in dim en sional
va riables :

au + Uau + gaS
ilt ilx ax

= Ah 2 il
3
U + Ah 2(U

a3u _ aU ilZU) + h ils il
2U

(20)
ilx2 i1 t ilx" ilx ilx" ilx ilxat

with h=d + s.
The above equa t ion is sim ilar to th e Serre equa tion (SER­

RE, 1953, MEl, 1983, DINGEMANS, 1997).
The coefficient A is given by:

20.00 l
19.00 l

1.0

0.5

M od el

S to kes 3rd o rde r th eo ry

d/L o =OA H/Lo=O. J

18.00
V'

17.00 0.0

16.00

Figure 2. Va riat ion of coefficient B with dlLo (lin ea r wa ves ).

I
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Figu re 4. Sur face elevation of a non-lineal' wave in inter media te wa ter :
Comparison with S tokes III theory (d/Lo = 0.4 . Hid = 0.25 l.

I
0.50

I
0.40

I
0.20 0.30

dlLo

I
0.10

15.00 -+=----.---,----,c---r----,---.-- ,--------,-----,- -,

0.00
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Figur e 5. Surface eleva tion of a non-linea r wave in interm edi ate water:
Compa rison wit h tbe Stokes 1II theory (d/Lo = 0.3. HId = 0.333).

0.00 0.10 0.20 0.30
xi I.

0.40 0.50

Figu re 7. Sur face eleva t ion of a non-lin ear wave in shallow wat er : Com­
pari son with th e St rea m Function theory (d/Lo = 0.032 . Hid = 0.45).

expa ns ion as t he case for a n hori zontal bottom (i.e. equat ion
(8)) we ha ve:

(d + z) :J
G(d + z) = A,(d + z) + A3 . + . . .

wtz) = w; + (w , - w, )G(d + z)
h '

ri2U
P = pg( ~ - z ) + pF(d + z) - ­

rix ci t

whe re

(
(d + Z )2 (d + Z)4 )

F(d + z) = A, 2 + A'j 4h 2 + .. .

- h 2 (A , ~ + A:< ~ + . . .)

In shallow water, where A, ~ 1 and A3 .5 ~ 0, both dis-
tributions become identical to th e parabolic ones, obtained by
P E R EGRI N E (1972) for th e class ical Boussinesq equat ions.

U neven Bottom

200 .00
M od el

Fo ur ier V

(21)

H=30 m d= 150 m
T= 17 sec

For th e case of an un even bottom we also need an expres­
sion for th e ver tical velocity wtz). Adopting the same power 160.00

Mod el J 20.00

0.80 Strea m F unct ion Th eory
E

"
80.00

0.40 d/l. o=0.17 H/L o = ()'()86

------------ 8.006.004.00
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I I
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I I
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x/ L
0. 10

0.00 -

-0.40 t-I -,----,

0.00

::r::
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Figu re 6. Surface eleva t ion of a non-linea r wave in sha llow wat er : Com­
pari son with th e St rea m Fu nctio n theory (d/Lo = 0.17. HId = 0.5).

Figure 8. Vertical distribution of the hori zont a l velocity utz) in inter­
medi at e wat er : Compa rison with the Fourier th eory.
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Figure 9. Wave shoa ling on a 1:34 .26 slope. Compa rison betw een model
results and experimental da ta by Buh r Han sen and Sven dsen (1979). Test
no AI0112 (H = 70 mm and frequency F = 1 Hz).

Figure 11. Comp arison between model resul ts and experimenta l dat a
(Stive, 1983) of free sur face eleva t ion a t th e point x = 32.5 m. Test 1 (H

= 14.51 em and T = 1.79 sec).

where th e coefficients An are given from th e equa tion ( 4 ) and
W o and w; are th e vertical velocitie s a t th e bottom and surface
respectively:

w = a2(a~ + U iJ~ ) ;: (J 2( a~ + u a~ )
S at ax at sax

in which d, is th e bottom slope (a slowly-vary ing bathymetry
is assumed) and u, is th e hori zontal velocity at the bottom
(given by equat ion (6) for z = - d), a nd

w = - a 2 (hau + d U) for z - d (22)
8 ax x

with h = d + E ~.

Using again th e continuity equat ion (1) and supposing, as
in th e previou s paragraph, that ua~/ax;:usa~/ax , equa tion (22)
becomes:

In th is way equat ion (21) sa t isfies both th e bottom and th e
surface bounda ry conditions.

In the next we follow th e sa me procedure as in th e case for
hori zont al bottom. Th e flow is su pposed to be irrotational, so:

aw au
ax az

Repl acing w from equation (21) into th e above we have,
a fte r integration with respect to z:

Mod el

0.20 l • Experimenta l dat a

0.10

5
>J'

0.00

••
--.- . . .

I I I I
2.50 -0.40 0.00 0.40
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• Experimental da ta

0.50
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2.50

o
~1.50
:r:

0.50 -+----~------,-----,--------,

Figu re 10. Wave shoaling on a 1:34.26 slope. Compar ison between model
resu lt s and experimental data by Buhr Han sen and Svend sen (1979). Test
no 04 1041 (H = 40 mrn and F = 0.4 Hz).

Figu re 12. Comparison between model resu lts and experimenta l data
(Stive, 1983) of free surface eleva tion a t th e point x = 32.5 m. Tes t 2 (H

= 14.43 ern an d T = 3.0 sec ).
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Figure 14. Comparison between model resu lt s a nd exper imenta l da ta
(St ive , 1983) of hori zontal velocity distribution und er th e cres t at the
poin t x = 32.5 m. Test 2 (H = 14.43 em and T = 3.0 sec) ,

Figure 13. Compa rison bet ween model results and experimenta l dat a
(Stive, 1983) of hor izontal velocity distr ibu t ion under the cres t at the
poin t x = 32.5 m. Test 1 (H = 14.51 em and T = 1.79 sec).
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wher e th e subscript x denotes a partial derivativ e and D is
given by:

The substitution of equations (22) and (23) into equat ion
(8), retaining ter ms up to O(E), O(UZ) and O(EuZ), leads to

D = au + d U - U o

ax ' h

where U - u., = O(U Z )

Th e hori zontal velocity at the surface is written:

. a(AD ) . [ ( 1 3 ) auo1]u = U- u 2hz--- u zd h D A - +A - + . . . + - -
S ax x 1 2 3 4 ax 2

(24)

(25)

(
au )az A -

= hZ ax + Ahz(Ua3u _ au aZu) + d as azu
axat ax' ax axZ axaxat

[
azu (1 3 ) azu 1]

+ d.h axa t A12 + A34 + . . . + axa~2

azu [( 1 3 ) 1] as au
+ d,hUa0 A' 2 + A34 + ... + 2 + d' ax at

au su as- + EU- + - = O(U Z )
at ax ax

which leads to the following sm all qu antity:

M A DS E N et al , ( 991) derived a new form of th e Boussinesq
equa tions by adding a sma ll quantity of order O(E(Tz, ( 4 ) to
th e momentum equa t ion (2) (see also S CHAF F ER and MAD­

SEN, 1995). Based on the sa me pr ocedure, but using th e non­
linear long wave equa tion instead of th e linear one, we con­
side r:

As mentioned before, in the previous deriv ations a slowly­
va rying bathymetry is ass umed and conse quently terms with
d"" and (d,j2 have been ignored.

A Different Form of the Equations

th e derivation of th e momentum equa tion over uneven bot­
tom (in variabl es with dimen sion):

au au as- + U - + g­
at ax ax

(23)

aD[( (d + z)2 (d + Z )4 )utz) = U - U Z- Al + A3 h + . . .ax 2 4 Z

(
h

Z

h' ) ]- A'6 + A320 + . ..

[(
(d + z)2 (d + Z)4 )- uZD A" + A3 , h + .. .. 2 . 4 Z

(
h

Z

h
4

) ]- A" ' 6 + A3.x20 + . ..

[ (
(d + zJ3 )- u Zd xD A,z + A3 hZ + . ..

- A,s + h(A,~ - A3~ - .. .) ]

auo d auoh- u Zd -z - u Z - -
x ax ' ax 2
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In the next the abo ve form of the momentum equa tio n
should be used in the numerical computatio ns . Th e reason

au au a~- + U - + g­
at ax ax

(
au )a" U -

a"u a"~ ax
- BIT" d" I- - + - + E 1= O(IT 4 ) (26)

ax"at ax' ax "

with B a coefficien t. Th e above sma ll qu antity differs from
that used by MADSEN et al. (1991) by the non lin ear term
EU"(UU) xx(because in the present work terms of ord er O(EU")
a re not neglected ). Th e qu antity is added to (25) (in which
terms of orde r O(IT4 ) have been neglected ) result ing to a new
form of Boussinesq equat ions . Th e sa me pr ocedure was al so
adopte d by SCHAFFER and MADSEN (1995) in ord er to deri ved
another form of th e equat ions .

Th e mom entum equation is now written in th e form:

(30)
gdk"

1 + Al kd )"
w" -

gk kd sinh kd

(
kd (kd ):' (kd) " )

si n h kd + - , + - -I + -- + . . . (kd l"
3 1. 53. 7 5!

w" = --

Substitution of the va lues of A in (30 ) yie lds :

or

RANGE OF APPLICATION OF T HE NEW
EQUATIO NS

Th e on ly di fferen ce between the new system of equati ons
and th e classica l typ e of Serre equa t ions is the coefficient A
(a nd B) in th e linear dispersion term. It is re mi nded here that
th e wh ole procedure is based on a solut ion of the lin ear La­
place equa tio n which gave th e distribut ion of th e vertical ve­
locity w. As a result the lin ea r dispersion relat ion correspond­
ing to equat ion (25):

which led us to a such a transfor ma ti on of the or igina l equa ­
tio ns is outl ine d below . Applying equa t ion (27) in deep water ,
th e wave ene rgy is pr opagated into the model without t he
significa nt disp er sive beh avi our of the front whi ch is present
in the classical form (equation 25)- see a lso MADSEN et al .,
(199 1). In addit ion, in periodic non lin ea r waves propagating
in sha llow wa te r ove r a constant depth, high er harmoni cs a re
bounded and travel with th e velocity of the basic wave and
since coefficie nt A is a fun ct ion of the first harmonic only,
equa t ion (25 ) ca n be used . In th e contrary whe n a firs t order
bounda ry condit ion in shallow wa te r is a pplied or th e waves
t ravel over slopes and bars, more higher harmonics a re gen­
erated propagating as free components (CHAPALAIN et al.,
1992, DINGEMANS, 1993). In th is case equa t ion (27) is used ,
which ca n provide s ignificant improv eme nt of th e disp ersion
relation of t he high er free harmon ics (MADSEN and SOREN­
SEN, 1993 ) with resp ect to the equation (25) , while using
equa t ion (29) for B (instead of th e cons tant va lue 1/15 ) th e
propagation of th e first harmonic is sti ll predi cted acc urate ly .

Figure 2 shows the vari ation of l iB with the ratio d/Lo, for
linear waves. For small values of d/Lo (a nd kd ) l IB ~ 15 as
pro posed in MADSEN and SORENSEN (1992 ).

In this way th e new type of eq ua t ions becomes si mila r to
the MADSEN et al , (199 1) and NWOGU (1993 ) models, with
the new val ue of B, vali d for monoch roma t ic only waves.
Si nce th e two disp ersion re la tio ns cor re sponding to th e new
versio ns of the Boussinesq equations (eq. 25 and eq. 27 ) are
a lso identi cal and equa l to th e exact linea r one (see the next
pa ragraph ), the new model has now a more accurate form as
far as the linear disp ersion characterist ics a re concerned .

Th e mode ls proposed by MADSEN et al, (1991) and NWOGU
(1993 ), have the advantage of bein g a ble to simula te irregul ar
wa ve propagatio n in intermed iate wa ter. The pr esent model
can a lso be used for th e simulation of non mon ochromati c
waves adopt ing a mean per iod for the ca lculation of B. In this
case the va lue of R should be between 1/15 and 1/18.6 (F igu re
2 ).

(29)
A - 1/3

Atkd )''
B =

(
au )a" A -

. ax . (a"u au a"u ) a~ a"u
= h' -r Ah" U- - - - + d- --

axat ax " ax ax " ax ax at

[
s-u(1 3 ) iFu" 1]+ dxh - - A,- + A, ,- + .. . + ---
axa t 2 . 4 axat 2

a"u [( 1 3 ) 1] a~ au+ dxhU- A,- + A, ,- + .. . + - + dx- -
ax " 2 . 4 2 ax at

v(uau
)

a"U a"~ ( ax
+ Bd"I-- + g- + I (27)

ax"at ax" ax "

Following the sa me procedure th e tw o-deminsional form of
the equat ions is obtained :

U, + UVU + gV~

= h"V(AVU ), + Ah "<uV"U - VUV"U ) + dV~VU,

+ Vdh [VU,(A,~ + A,,~ + ) + VU<> I ~]

+ Vdh [UV"U(A , ~ + A:l~ + ) + ~] + VdV~VU
+ Bd"(V"U, + gV :l~ + V"UVU ) (28)

In ord er to obtain the sa me lin ear disp ersion relation with
th at cor responding to equat ion (20) the following proc edure
is adopte d for the es t imat ion of the coefficient B. Th e com­
parison of th e momentum equatio n (20) (including linear
terms only ) and the a bove equation (27) lead s to :

(8 + 1!J ) d" Uxx' + B g d" t.., = A a-u.,
where F, == aF/ax.

Repl acing ~xx x and Uxx' from lin ear wave t heory (since only
linea r term s of ord er O(u" ) are involved ) the va lue of B is
given by th e re la t ion:
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gk sinh kd

tkd) :' t kd r'
+ +

2! 4!
+ .. .

(31)

au c2 (I ~
- + - - = 0
(I t d (I x

~ + i U
= 0

(I t ax
(33)

NUMERICAL SOLUTION

where F is th e velocity U or th e eleva t ion ~ .

In order to overcome th e numeri cal dispersion and dissi­
pati on some correction terms have to be included in th e F.D.
int egrati on. The se terms are detected by th e Taylor series
expansion of th e s ignificant terms:

- (d + ~ J U n + c (d + ~) = (1 - U , n l c ~ ,( t J (35 )

where n is th e unit vector normal to th e boundary (posit ive
outwards) a nd u, is th e unit vector of th e prop agation direc­
tion .

At the outgo ing wave boundary (perfect ly absorbing or par­
ti al reflection ) the sponge layer te chnique is appli ed .

Th e abov e numerical solut ion is eva lua ted, as far as th e
numeric al dispersion errors are concern ed, for its ability to
prop agate a lin ear wave with correct celer ity. Th e results
from th e propagati on of a sine wave over a const ant depth in
deep water is presented in Figure 3 using a lin ear version of
th e model i.e. excluding th e non linear terms. Th e wave is
propagated a long dist ance with out significant cha nges in its
height and its celerity, illu strating in this way th e small nu­
meri cal dispersion error which is introduced in th e numeri cal
solut ion.

(
CiX 2 . CiF) (I " ~

-- + c ~- --
6 6 (lx ~(l t

(
_ gd D.X

2 + c ~D.F) (I"U (34)
c" 6 6 (l x 2 (1t

in th e right hand side of th e conti nuity and momentum equa ­
tion respectiv ely.

As in ARBOT et al. (1984 ) bottom slope effects a re not sig­
nificant and a re ignored in th e correction terms. Th e exten­
s ion in a two -dimension al case (see also NEVES a nd SILVA,
1988 ) can be easily introdu ced adopt ing a full form of th e
equations (33 J.

In shallow water , where c = (gd )) '2, equa t ion (33) reduces
to the linear long wave equat ion, and the numeri cal scheme
becomes iden ti cal to th e one for clas sical Boussin esq equa ­
tions. In thi s way th e numerical sche me also maintains th e
unifi ed form of th e syste m of equations, i.e. th eir validity both
in intermediate and shallow water. In th e last region , for val­
ues of Cix near d, th e correction terms are very imp ortant
since t hey a re gene ra lly of th e sa me ord er as the non hydro­
stat ic dispersion term of th e Boussinesq momen tum equa­
tion . In deeper water th e value of Cix is mu ch sma ller th an
th e value of d a nd th e correc t ion terms become less impor­
tant.

For th e 2-0 cases exactly th e same numeri cal scheme is
used (Kara mba s, 1991> ins tead of an AD! algorithm in order
to have a symmet ric treatment of all va riables with respect
to x a nd y. Th e resulting linear system of equat ions is solved
usin g a pr edictor-corrector technique (MATSOLJ KIS, 1986 l.

Th e model is dri ven at th e open boundary by a t ime func­
tion of th e free surface ~ ,itl. Th e open boundary condition
allows fill' th e reflect wave to be rad iated out of th e compu­
tational domain (HAlle;EL, 1980 , KARAMBAS, 1992 ):

Based on th e above equa t ions and followin g th e sa me method
for th e tran sformation of th e truncation errors th e new cor­
rection terms become:

2CixaFl"ilx ,2Cit

ilF I" F ~ I ' I - F:l I CiF il"F
- --

ilt , 2Cit 6 ilt"

ilFI"
Fn - fl-' n Cix" ,1" F,., , I - - - (:121

(I x , 2Cix 6 (Ix "

ilF I"
(it ,

In th e existing numer ical sche mes th e abov e correction terms
have been transformed with th e help of th e line ar long wave
equat ions to be simila r to th e dispersion term (see also AIl­
BOT et al.. 19841. Obviously since linear long wave equa t ions
are not va lid in deep water, th ese should not be used here.
Inst ead of thi s th e simplified form of the tim e-depend ent
mild- slope equat ion (COPELAND, 1985) is used together' with
th e linear cont inuity equat ion:

Th e numerical method is ba sed on a third ord er accuracy
scheme, the principle s of which have been described by KAR­
AMRAS et al . (1990) and KAHAMIlAS (199 1l. In th e next only
th e differ ences betw een to present numeri cal code and th e
exist ing one will be emphasized .

The partial deri vatives of th e se t of equa t ions (1) and (24 )
can be approximated using cent ral finit e diff e rences both in
space and tim e:

th e well known rel ation from Airy lin ear theory.
Thus, as far as th e line ar disper sion prop erties are con­

cern ed, th e equations a re exact.
In the proposed set of non -linear equat ions th e cont inuity

equat ion , which is exact in deep , intermedi ate and sh allow
water with out any restriction in non-linearity ii.e. to all or­
ders of E a nd (T~ ) , remains un changed. Th e equat ions a re de­
rived keeping te rms of ord er up to O(E(T~ ) in the momentum
equation. Cons ide ring the above derivation , as a deep water
limit of th e va lidity of equat ions can be cons ide red th e prac­
tical deep water limit i.e. th e half of the wave length , d/L =

0.5. For a near breaking wave in intermediate water, say (T

= dlL = 0.5, the value of E is about E = 0.2H (cons ide ring a
breaking limit HlL = 0.14) and th e pr oduct m " = 0.07 (a
small quantity ). Thus th e deri ved set of equa t ions is a ble to
simulate non-line ar dispersive wave propagation in inter­
mediate and sha llow water.
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APPLICATION

The aim of this study was not to develope a model to re­
place the non-linear wave theory but to improve the existing
numerical models extending their validity in deeper water.
However in order to test the computational model a compar­
ison with non-linear theories and experimental data is pre­
sented. Stokes 3rd order theory for intermediate water and
Stream Function theory for intermeuiate and shallow water
are chosen for the comparison.

Figures 4 and 5 show a comparison of the model results
with Stokes III theory concerning the prediction of the sur­
face elevation ~ in intermediate water: dlLo=0.4 and dI
Lo=0.3. The input at the western boundary is a time serie of
the surface elevation ~I using Stokes III theory. Stokes III
waves may not be consistent with the derived equations.
However it is a solution valid to indermediate water, close to
the nonlinear order which is considered here. In addition
with the use of the theory, suppression of the free higher
harmonics is obtained. In this way, the well-known spatial
variations in wave properties are avoided. After several wave
lengths of propagation in a channel with horizontal bottom
the instantaneous wave profile, from x = 15L to x = 15.5L,
is compared with Stokes III theory. The non-linearity is cho­
sen to be important: Hid = 0.25, Hid = 0.333, and in both
cases HlL:::::::0.10. The numerical results agree reasonably well
with the theory. In shallow water the model is tested against
Stream Function Theory (CHAPLIN, 1980). At the western
boundary a cnoidal wave is used as input and the comparison
is made at the position x = 15L to x = 15.5L. The comparison
between model results and theory is presented in Figures 6
(d/Lo = 0.17, Hid = 0.5) and Figure 7 (d/Lo = 0.032, Hid =
0.45).

Another significant numerical experiment (Figure 8) is the
comparison of the vertical distribution of the horizontal ve­
locity ut z), as predicted by equation (16), with the Fourier
non-linear theory (HUANG, 1990). The model predicts well the
u distribution over the depth confirming also the validity of
the coefficients An, upon which the present model has been
developed.

In the next the propagation of non-linear dispersive waves
over uneven bottom will be considered. Model results are
compared with three different experimental set of data. In
the first experiment, by BUHR HANSEN and SVENDSEN
(1979), the transformation of non-linear waves over a sloping
plane bottom is investigated. The experiments were made in
a wave flume 60 em wide and 32 ill long. In the upstream
part of the flume with horizontal bottom the depth was 36
em. The toe of the beach was 14.78 m from the wave gener­
ator and the slope was 1:34.26. Test no A10112 (H = 70 mm
and frequency F = 1 Hz) and 041041 (H = 40 mm and F =
0.4 Hz) are reproduced. In Figures 9 and 10 the model results
(wave height) are compared with experimental data. The re­
sults agree very well with measurements.

Experimental data for the second comparison are obtained
by STIVE (1983). The experiments were conducted in a wave
flume 1 m wide and 55 m long. The basic set-up consisted of
a plane beach of 1:40 slope. The toe of the beach was 16 m
from the wave generator (x = 16 m ) and the water depth in

the horizontal section was 0.70 m. Two tests are reproduced:
test 1 (H = 14.51 em and T = 1.79 sec) and test 2 (H = 14.43
em and T = 3.0 sec). Surface elevation and horizontal velocity
(under the crest) measurements at the point x = 32.5 m, in
the shoaling region, are compared with model results in fig­
ures 11, 12, 13 and 14. The model is seen to predict well both
surface elevation ~ and velocity distribution utz ).

Finally, the 2D version of the model is applied to study
wave propagation over a coplicated geometry used by BERK­
HOFF et al. (1982). This experiment is a standard test for
verifying models based on mild-slope equation. Monochro­
matic waves with period 1 sec and height H = 4.64 em are
generated by a wavemaker at y = - 10 m. The experimental
topography consists of an elliptic shoal resting on a plane
sloping bottom with a slope 1:50. The plane slope rises from
a region of constant depth d = 0.45 m (d/Lo = 0.288, i.e.
intermediate water) and the entire slope is turned at an angle
of 20° to a straight wave paddle. The slope is described by: d
= 0.45 m for y' < -5.82 m and d = 0.45 - 0.02(5.82 + yIm
for y' > -5.82 m (x ' and y' are the slope-oriented coordi­
nates). The boundary of the shoal is given by (x'/4)~ + (y'/3)~

= 1 and the thickness of the shoal is d = -0.3 + 0.5(1-(x'/5)~
- (y'13. 75 )~ )li~ •

Wave heights along eight sections near the shoal were mea­
sured in the experiment. Figure 11 shows the comparison of
experimental data and model results. The agreement is rea­
sonably good.

Runs of the above three tests without the additional non
linear Serre terms, of order O(E(J~), in the equations (27) and
(28) were also made. The agreement was generally good but
not as good as seen using these terms. The differences are
more significant in the shoaling test by BUHR HANSEN and
SVENDSEN (1979) and in the 2DH propagation over the shoal.
The need of inclusion additional terms is also pointed out by
WEI and KIRBY (1995) and WI<=I et al. (1995).

CONCLUSIONS

A new form of two types of the Boussinesq equations has
been presented in this work with corrected dispersion char­
acteristics for monochromatic waves only. Considering non­
linear waves, the new equations are now valid both in inter­
mediate and shallow water keeping a unified form. Using the
mean over the depth horizontal velocity as the velocity vari­
able the continuity equation, which is exact to all orders of E

and (J~, remains unchanged. In the momentum equation non­
linear terms of order up to O(E(J~) are considered.

The distribution of the velocities w, u and pressure p (based
on an analytical solution of the Laplace equation) are not
similar to those of classical Boussinesq equations as derived
in PEREGRINE (1972) and mainly used by many researchers
ti.e. parabolic utz l and piz Il.

The proposed model is tested against analytical solution
and experimental data. The wave height in shoaling region,
the surface elevation profile and the horizontal velocity dis­
tribution are predicted very well. Thus the new model can be
used for the simulation of the non-linear wave propagation
in intermediate and shallow water.
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