

University of Florida Potato Variety Trials Spotlight: 'Atlantic' 1

Rodrick Z. Mwatuwa, Christian T. Christensen, and Lincoln Zotarelli²

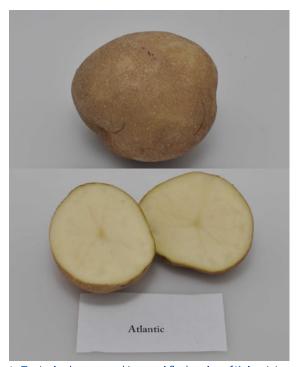


Figure 1. Typical tuber set and internal flesh color of 'Atlantic'. Credits: Lincoln Zotarelli

General Comments

'Atlantic' is a white-skinned, chipping potato commonly cultivated in Florida (Figure 1). The cultivar was released as a white mutant of the USDA breeding program. It was selected from a cross of Wauseon and Lenape (UDSA seedling B5141-6). 'Atlantic' was released in July 1976 by the Agricultural Research Service of the USDA, the Florida Agricultural Experiment Station, the Virginia Truck and

Ornamentals Research Station, the New Jersey Agricultural Experiment Station, and the Maine Agricultural Experiment Station (Webb et al. 1976). Production and quality results provided in this spotlight are summarized from various trials conducted by the University of Florida over the past 18 years.

General Characteristics

'Atlantic' tubers are smooth with an oval to round shape. Its white skin has light to heavy scaly net touch. In heavy soils or areas with high organic matter the skin may be dark. The variety has white eye and internal flesh color. It is a high yielding variety with relatively low specific gravity adapted for Florida growing conditions (Tables 1, 2, and 3).

Season Length and Growth

The length of time from planting to harvesting is approximately 85 to 110 days depending on growing conditions during the season. Late in the season, tuber size should be checked regularly. 'Atlantic' typically shows rapid vegetative growth between 40 and 75 days after planting (Rens et al. 2015). It matures during the middle to late portions of the season.

Fertilization

University of Florida trial plots were fertilized with 200 to 230 lb/acre N. The first application of 100 lb/acre of N (granular) was incorporated in the bed prior to planting,

- 1. This document is HS1278, one of a series of the Horticultural Sciences Department, UF/IFAS Extension. Original publication date March 2016. Revised Visit the EDIS website at http://edis.ifas.ufl.edu.
- 2. Rodrick Z. Mwatuwa, research assistant; Christian T. Christensen, graduate student; Lincoln Zotarelli assistant professor; Horticultural Sciences Department, UF/IFAS Extension, Gainesville, FL 32611.

The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county's UF/IFAS Extension office. U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Nick T. Place, dean for UF/IFAS Extension.

followed by one or two side-dress fertilizer applications at emergence and/or at tuber initiation.

Planting

A seed piece of $2^{1}/_{2}$ to 3 oz is recommended for planting. The crop should be planted with 36 to 42 inches between rows, 7 to 10 inches between plants, and 3 to 4 inches deep. A seed rate of 2,000 to 3,000 lb/acre seed is expected.

Diseases

The cultivar is tolerant to scab and Verticillium wilt; resistant to pinkeye; and highly resistant to Race A of golden nematode, virus X, and tuber net necrosis. Tubers are susceptible to internal heat necrosis, particularly in sandy soils and during warm, dry seasons. In some areas, hollow heart can be serious in large tubers (diameter > 3 in), especially when growing conditions fluctuate during the season.

Seed Source

Seed for the trial was provided from many sources including Maine Farmer's Exchange (MFX), University of Maine, USDA-ARS Presque Isle, and Maine growers.

Other Information

For additional information on cultivation and management see the Potato Production chapter of the *Vegetable Production Handbook* available at http://edis.ifas.ufl.edu/cv131.

References

Hutchinson, C. M., J. M. White, D. M., Gergela, P. A. Solano, K. G. Haynes, R. Wenrich, and C. S. Lippi. 2003. Performance of chip processing potato varieties in northeastern Florida. *HortTechnology*, 13(4), 706-711.

Rens, L.R., L. Zotarelli, D.J. Cantliffe, P.J. Stoffella, D. Gergela, and D. Fourman. 2015. "Biomass Accumulation, Marketable Yield, and Quality of 'Atlantic' Potato in Response to Nitrogen." *Agronomy Journal* 107: 931–942.

Sisson, J.A. and G.A. Porter. 2002. Performance evaluations of potato clones and varieties in the northeastern states-1999. *Maine Agr. For. Expt. Sta., Misc. Publ.* 751.

Webb, R. E., D.R Wilson, J.R. Shumaker, B. Graves, M.R. Henninger, J. Watts, and H.J. Murphy. 1978. "Atlantic': A new potato variety with high solids, good processing quality, and resistance to pests." *American Journal of Potato Research* 55(3): 141–145.

Table 1. Summary of production statistics and specific gravity of 'Atlantic' potato variety grown at the UF/IFAS Hastings Agricultural Extension Center, Hastings, FL.

Year	Total Yield	Marketable Yield¹ (cwt/A)	Size Class (Distribution by Class %) ²						Range %		Specific Gravity
	(cwt/A)		C	В	A 1	A2	А3	A4	A1 to A3	Culls	
1998	371	336	n.a.³	10*	40	37	13	0	90	6	1.079
1999	434	380	n.a.	12*	63	24	1	0	88	9	1.071
2000	392	347	n.a.	13*	20	28	38	0	89	9	1.072
2001	352	325	n.a.	2*	24	43	31	0	98	5	1.081
2002	351	316	n.a.	5*	45	38	12	0	95	5	1.079
2003	454	397	n.a.	9*	34	33	23	0	91	4	1.076
2004	420	358	6	6	52	31	5	0	88	3	1.086
2005	355	308	1	8	60	25	6	0	91	4	1.082
2006	376	335	1	6	67	22	4	0	93	4	1.085
2007	403	358	1	7	54	26	12	0	92	3	1.077
2008	342	278	2	13	69	13	3	0	85	5	1.084
2009	345	266	2	8	65	17	8	0	90	15	1.066
2010	349	270	3	17	72	7	1	0	80	4	1.070
2011	331	271	2	11	61	18	8	0	87	5	1.080
2012	391	318	1	4	54	24	17	1	95	16	1.078
2013	277	229	1	6	64	18	12	0	94	14	1.067
2014	261	210	2	10	60	9	7	0	76	18	1.073
2015	316	264	2	9	61	13	15	0	88	7	1.070
verage	362	309	2	9	54	24	12	0	89	8	1.076

¹Marketable yield: sum of size classes A1 to A3.

 $^{^2}$ Size classes: C = 0.5 to 1.5 inches, B = 1.5 to 1 7/8 inches, A1 = 1 7/8 to 2.5 inches, A2 = 2.5 to 3.25 inches, A3 = 3.25 to 4 inches, A4 > 4 inches; Size distribution by class: Class .(wt)/(Total Yield [wt] – culls [wt]).

³n.a. = not available

^{*}classification = <17/8 inches (C and B included in this classification).

Table 2. Yield, vine maturity, tuber characteristics, and internal tuber defects of 'Atlantic' potato variety grown at the UF/IFAS Hastings Agricultural Extension Center, Hastings, FL.

Year	Vine Maturity (vine kill)	Tuber Characteristics ¹							Internal Defects ²			
		IFC	sc	ST	TS	ED	APP	НН	BR	CRS	IHN	
1998	n.a.³	n.a.	7	5	2	5	6	n.a.	n.a.	n.a.	n.a.	
1999	n.a.	n.a.	6	6	2	5	5	1	0	0	0	
2000	n.a.	n.a.	7	6	4	6	5	2	0	0	1	
2001	3	1	6	6	3	6	6	1	0	0	3	
2002	3	1	6	5	2	7	6	8	0	1	5	
2003	4	2	6	5	3	6	6	8	0	0	2	
2004	6	2	6	5	3	6	6	4	0	0	4	
2005	6	2	6	5	3	6	6	2	0	0	2	
2006	6	2	6	5	3	6	6	1	0	0	1	
2007	6	2	6	5	3	6	7	4	0	0	1	
2008	6	2	6	5	3	6	5	1	0	0	5	
2009	5	2	5	5	3	5	6	2	0	0	0	
2010	6	2	6	5	4	5	6	6	0	0	1	
2011	4	2	6	5	3	5	6	2	0	1	2	
2012	6	2	6	5	3	5	6	5	0	0	2	
2013	6	2	5	4	2	4	6	0	0	0	1	
2014	2	2	6	5	3	6	7	1	0	0	5	
2015	6	2	8	8	3	8	6	2	0	0	0	
lverage	5	2	6	5	3	6	6	3	0	0	2	

¹See rating system outlined in Florida Rating Code Table (Table 3).

Table 3. Florida rating codes for potato vine and tuber characteristics¹

			Tuber Ch	aracteristics			
Rating Code	Vine Maturity	Internal Flesh color	Skin Color	Skin Texture	Tuber Shape	Eye Depth	Overall Appearance
1	dead	white	purple	partial russet	round	very deep	very poor
2	+-	cream	red	heavy russet	mostly round		
3	yellow and dying	light yellow	pink	moderate russet	round to oblong	deep	poor
4	+-	medium yellow	dark brown	light russet	mostly oblong		
5	moderately senesced	dark ye ll ow	brown	netted	oblong	intermediate	fair
6	+-	pink	tan	slightly netted	oblong to long		
7	starting to senesce	red	buff	moderately smooth	mostly long	shallow	good
8	+-	blue	white	smooth	long		
9	green and vigorous	purple	cream	very smooth	cylindrical	very shallow	Excellent
dapted fro	om Hutchinson, C. M. et a	al. (2003), and Sisson,	J.A. and G.A	. Porter (2002).			

²Percent tuber defects. HH = hollow heart, BR = brown rot, CRS = corky ring spot, IHN = internal heat necrosis.

³n.a. = not available