
AE541

Applications of Unmanned Aerial Systems in 
Agricultural Operation Management: Part I: Overview1

James Fletcher and Aditya Singh2

1.	 This document is AE541, one of a series of the Department of Agricultural and Biological Engineering, UF/IFAS Extension. Original publication date 
June 2020. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication.

2.	 James Fletcher, regional specialized agent IV emeritus, water resources, UF/IFAS Mid-Florida Research and Education Center; and Aditya Singh, 
assistant professor, remote sensing, Department of Agricultural and Biological Engineering; UF/IFAS Extension, Gainesville, FL 32611.

The use of trade names in this publication is solely for the purpose of providing specific information. UF/IFAS does not guarantee or warranty the 
products named, and references to them in this publication do not signify our approval to the exclusion of other products of suitable composition.

The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services 
only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, 
national origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county’s UF/IFAS Extension office. 
U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County 
Commissioners Cooperating. Nick T. Place, dean for UF/IFAS Extension.

Unmanned aerial systems (UASs, UAVs, or drones) have 
emerged as one of the most promising technologies for 
agricultural operation management in recent decades. 
Simplifications in UAS operation and development of 
cloud-based image processing pipelines have increased 
the accessibility of these technologies to a wide variety 
of users. From the standpoint of potential users, these 
developments have raised the possibility of the use of UASs 
for day-to-day farm management. This EDIS publication 
provides an overview of the broad areas where UASs can be 
utilized for monitoring and managing farm operations. It 
is the first in a series of three publications that covers: 1) an 
overview of the potential applications of unmanned aerial 
systems (UASs) for agricultural operations management in 
Florida (this paper), 2) an overview of UAS platforms and 
payloads relevant to UAS applications in agriculture, and 3) 
an overview of best practices for efficient UAS-based aerial 
surveying.

These publications will set the groundwork for subsequent 
publications on UAS applications in agricultural manage-
ment detailing: 1) the computation, interpretation, and use 
of image products such as NDVI from UAS imagery; 2) the 
use of emerging technologies such as spectroscopy for crop 
water and nutrient management; and 3) advanced applica-
tions of LiDAR and hyperspectral imaging for soil moisture 

and plant health assessments at field scales. This series is 
a compendium on sensors and upcoming technologies 
that are relevant to practitioners and Extension agents as 
practical examples of applications of UASs for monitoring 
nutrients, water stress, diseases, weeds, and eventually, 
yields for field and tree crops in Florida.

Introduction
Advances in the automation of agricultural operations have 
provided a boost to reducing farmers’ logistics and labor 
costs while simultaneously increasing agricultural produc-
tion efficiencies, and in many cases, possibly improving 
worker safety outcomes (Bac et al. 2014; Bergerman et al. 
2012; Edan et al. 2009; Fathallah 2010; Grift et al. 2008). 
Newer technologies are also helping agricultural operations 
in managing environmental and economic risks that may 
have important sustainability and financial implications 
(Stubbs 2016; World Bank 2005). This is especially true 
for Florida, considering ongoing changes in the rules and 
regulations that govern the use of natural resources. Over 
the past 80 years, the population of Florida has quadrupled 
from approximately 5 million to more than 20 million 
people. By 2070, Florida’s population is estimated to grow 
by another 15 million people (Water 2070 Summary 
Report 2016). Based on current and projected scenarios, 
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it is important to critically evaluate newer technologies 
and educate producers on appropriate uses for increasing 
efficiencies in farm operations management. Unmanned 
aerial systems (UASs, UAVs, or drones) are among the 
many promising technologies that can help achieve these 
goals.

Remote sensing technologies have a long history of use in 
mapping and monitoring natural and human-managed 
landscapes. While satellite remote sensing has enabled 
the management of large landscapes by helping generalize 
point-based observations to entire regions, processing 
these data into operationally useful products has remained 
largely within the domain of trained professionals. Recent 
developments in sensor miniaturization and out-of-the-box 
usability of UASs have enhanced the accessibility of these 
technologies to a far larger cohort of users. UASs can 
now be used to collect data over field-scale operations as 
frequently as needed at high spatial resolutions and to help 
simplify a wide variety of applications that might otherwise 
be logistically difficult, resource-intensive, or prohibitive in 
time and labor.

The use of UASs has expanded in recent times due to 
increased equipment affordability and reliability as well as 
availability of processing software developed specifically 
to process UAS data. Industry sectors are consequently 
developing innovative ways to use UASs in agriculture 
by leveraging the ability to fly on-demand missions at 
low altitudes, allowing for frequent monitoring of crops 
(Gago et al. 2015). UASs have been used to provide useful 
details about plant health, agricultural water management 
(quality and quantity), weed management, and growth 
characteristics (Herwitz et al. 2004; Berni et al. 2009; Huang 
et al. 2013), to detect diseases (Abdulridha et al. 2019a; 
Abdulridha et al. 2019b; Harihara et al. 2019), to evaluate 
rootstock (Ampatzidis et al. 2019a), and to perform crop 
phenotyping (Ampatzidis et al. 2019b). UASs equipped 
with thermal sensors can also help identify areas of poten-
tial under- and over-irrigation in real time for managing 
and optimizing irrigation water use (Gago et al. 2015; 
Zarco-Tejada, González-Dugo, and Berni 2012; Baluja et al. 
2012). While many technological advances have been made 
in increasing usability of UASs, algorithms still need to be 
customized to specific local contexts to be operationally 
feasible for irrigation management, plant nutrient demand, 
and other areas of direct applicability to agriculture.

In general, data obtained from UAS sensors are used to 
develop baseline maps to identify issues related to crop 
production by looking at the measures of light reflected off 
plant canopies. Each plant canopy has its own characteristic 

way of reflecting certain wavelengths of light that change 
with variations in the plant’s structural or biochemical 
attributes. A plethora of image indices (i.e., ratios or 
combination of wavelengths; e.g., Normalized Difference 
Vegetation Index, NDVI = [Near infrared – Red]/[Near 
infrared + Red]) can be used to derive indicators of plant 
health, canopy coverage, and/or water status of canopies. 
Henrich et al. (2009) have compiled a comprehensive list of 
image and spectral indices that are often utilized in remote 
sensing studies. A follow-up publication in this series will 
describe a subset of these indices that can specifically be 
derived using aerial imagery from UASs.

Requirements to Use UASs
Before planning any activity involving UASs, the user 
must have a comprehensive understanding of the legal 
and regulatory requirements of using UASs from the 
Federal Aviation Administration (FAA). In August 2016, 
FAA released new rules about the registration of UASs for 
commercial use. These rules apply to UASs weighing more 
than 0.55 lb and less than 55 lb. Requirements include, 
among other things, passing an exam to obtain a remote 
pilot airman certificate. There are many resources available 
to help obtain this certification, starting with the FAA 
website (https://www.faa.gov/uas/getting_started/). For 
a primer on legal and operational issues in the use and 
operation of UASs, see EDIS publications by Kakarla and 
Ampatzidis (https://edis.ifas.ufl.edu/ae527; https://edis.ifas.
ufl.edu/ae535).

Airframes and Sensors
There are many different types of UASs that can be selected 
for agricultural operations. These include multirotor 
(quadcopters, hexacopters), fixed-wing aircraft, and/or 
hybrid vertical takeoff and landing (VTOL) airframes. 
There are substantial tradeoffs to consider when selecting 
the appropriate airframe, depending on flight requirements 
(i.e., flight time, maximum/minimum altitude, stability, 
takeoff/landing characteristics) and/or sensor payload 
requirements. Regardless of the airframe, one of the most 
critical components in any UAS is the choice of the sensor 
payload, which could include imaging sensors, laser scan-
ners, or thermal cameras. An imaging sensor is much like 
a camera on a typical cell phone and collects reflected light 
in three broad spectral regions: red, green, and blue (RGB: 
Red: 600nm, Green: 500nm, and Blue: 400nm). Multispec-
tral sensors extend the spectral sampling to wavelength 
ranges beyond the visible spectrum (e.g., near-infrared 
NIR: 700–1000nm), and hyperspectral sensors extend 
the spectral sampling to multiple contiguous wavelength 
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intervals (e.g., 270 wavebands in the 400–700nm range 
using the Headwall Nano® imaging sensor). For agricultural 
use, multispectral sensors generally span the RGB visible 
wavelength regions, and extend the sampling to the NIR 
band. Improvements in manufacturing technologies in im-
aging sensors spanning the Visible-NIR (VNIR) spectrum 
can now support very high-resolution images ranging from 
HD (1080 pixels across the diagonal), 4K (or 4096 × 2160 
pixels) to even 20MP for digital single-lens reflex (DSLR) 
cameras outfitted with bandpass filters. Multispectral sen-
sors can produce images used to quantify vegetation vigor 
by contrasting the reflectance in the red wavelengths with 
that of NIR wavelengths (Figure 1). Variations in patterns 
observed from these contrasts can reveal multiple facets of 
vegetation condition.

Although thermal imaging sensors do not provide 
high-resolution imagery, they can be used to detect plant 
water stress and irrigation management by contrasting the 
temperature of a canopy with the ambient temperature 
and relative humidity (Gago et al. 2015; Baluja et al. 2012). 
Recording electromagnetic radiation between the 7–13.5 
µm range of the electromagnetic spectrum (i.e., heat), 
thermal imagery converts longwave infrared radiation 
(LWIR) radiated off crops into a spatial map of canopy skin 
temperature (Figure 2).

Plant canopy temperature profiles generally correlate well 
with water stress, mostly resulting from reductions in 
evapotranspirative cooling of the plant canopy (Kustas et 
al. 2003; Allen, Tasumi, and Trezza 2007). Research has 

shown that spectral reflectance data from UAS imagery 
can be used as a tool to monitor plant nutrition and health, 
specifically nitrogen (Caturegli et al. 2016). UAS thermal 
imagery has served as a tool to determine water stress in a 
variety of tree and agronomic crops (Sullivan, Fulton, and 
Shaw 2007; Gonzalez-Dugo, Zarco-Tejada, and Nicolás 
2013; Gómez-Candón et al. 2016). The second publication 
in this series provides a selection guide for platforms and 
sensors.

Image Data Acquisition and Post-
processing
There have also been many advances in both commercial 
and open-source software platforms for planning and ex-
ecuting aerial surveys, image stitching, and post-processing 
of aerial imagery. Mobile applications are available to 
create flight plans which allow for autopilot of the UASs 
(e.g., DroneDeploy®, DJI Go®), and software is available 
for postflight image processing (e.g., Agisoft Metashape®, 
Pix4D®) and for stitching individual images into maps. 
Image post-processing software programs also allow the 
creation of standard vegetative index maps such as NDVI. 
While the operational details differ considerably, the ease 
of use of these platforms has been increasing each year. See 
examples for a specific software implementation by Kakarla 
and Ampatzidis in https://edis.ifas.ufl.edu/ae533. The 
third publication in this series helps frame data collection 
protocols for efficient aerial campaigns.

Figure 1. Patterns of NDVI (contrast between red and NIR wavebands 
calculated as [NIR - Red]/[NIR + Red]) scale the image between -1.0 
(no vegetation) to +1.0 (full canopy with around three leaf layers). This 
image from a turfgrass operation in Hastings, FL shows variations of 
canopy closure in an early stage of development. Transitional regions 
between deep blue or red indicate variations between no vegetation 
(blue) to full canopy (red). Note artifacts in coloration around the truck 
parked at the northwestern corner of the image.
Credits: Aditya Singh, UF/IFAS

Figure 2. Thermography reveals patterns of canopy cooling via 
irrigation from a center-pivot irrigation system in Hastings, FL. 
The image on the left shows a color infrared image (red denotes 
vegetation) acquired concurrently with thermal imaging (right image, 
color encoded as temperature). The thermal image illustrates the 
reduction in canopy temperature around the region wetted by the 
sprinklers (to the right of the sprinkler.)
Credits: Aditya Singh, UF/IFAS
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Operational Limitations of UASs
There are several limitations to using UASs and various 
sensors, depending upon the application context, and 
sometimes upon economic constraints. Most commercial 
off-the-shelf (COTS) UASs have limited flight duration 
ability. The average flight time for a small quadcopter with a 
standard battery pack is around 20 minutes. While battery 
modules can be added to extend flight time, this comes at a 
cost of payload capacity, thus limiting UAS applications in 
larger fields. Fixed-wing aircraft have longer flight times (up 
to 5 hours), but lack some of the maneuverability of multi-
rotors and have additional safety concerns during takeoff or 
landing. Although flight programs allow the UASs to return 
for battery replacement at a certain level and to continue 
the flight plan, the process itself can be time-consuming 
and may add extra costs for charging and maintaining 
multiple batteries at optimal charge.

One of the most important limitations of the use of UASs in 
agricultural applications is the quality and reliability of the 
data collected by the sensors. Specific recommendations for 
nutrient and water applications are generally not possible 
without careful calibration and validation of sensor data. 
Current work at UF/IFAS involves the development of 
algorithms for both multispectral and thermal imaging in 
an effort to quantify results and make recommendations for 
both fertilizer and water applications. These issues are even 
more critical for applications involving thermal sensors 
because these need additional steps for validation from 
ground-based sensors that might not be readily available 
to the general user. Thermal applications may be limited 
by any combination of issues, such as the sensitivity of 
observations, behavior of surfaces related to time of day, 
leaf location, and angle of the sun (Jones et al. 2009). In 
general, the use of a single sensor provides limited informa-
tion. When combined with multispectral and/or thermal 
sensors, it can assist in diagnosis of both primary (water 
deficit) and biotic (pest and disease) stresses (Leinonen and 
Jones 2004; Chaerle et al. 2007).

Conclusion
The wide commercial availability and affordability of 
UASs have raised the potential of their use by agricultural 
producers for day-to-day farm management operations. 
However, it should be noted that integrated systems that 
allow for real-time irrigation, nutrient, and/or disease 
management have not yet been implemented in most 
operational settings. According to Wright and Small (2016), 
the key to the successful use of precision agricultural 
technology will be the availability of algorithms that 

translate data, such as weather data, UAS imagery, and 
yield maps, into actionable information that can be used 
by growers to improve efficiency and profitability of their 
operations. These EDIS publications are intended to chart 
the way forward and help growers and Extension agents 
make informed decisions in this new and emerging field.
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