ENH1094 # Palms for North Florida¹ Edwin R. Duke and Gary W. Knox² **Palm** (päm) n. Any of various chiefly tropical evergreen trees, shrubs or woody vines of the family Palmae (Arecaceae), having unbranched trunks with a crown of pinnate or palmate leaves having conspicuous parallel venation. [ME<OE<OFr. Palme, both < *Latin* palma, palm of the hand.] American Heritage College Dictionary, 3rd ed. Palms are a prominent part of the Florida landscape. While many of the palms used in the southern parts of the state are not cold hardy, there is still a good selection of palm species that will grow in more northern regions (Figure 1). ## **Predicting Cold Hardiness in Palms** Palms suitable for northern Florida must be able to withstand at least intermittent periods of below-freezing weather. It is difficult to make generalizations about the cold hardiness of palms. Different growers report different experiences with the same species of palm after a cold spell. The reasons for this are numerous – the nature of the cold spell itself, microclimate differences surrounding the palm, and the palms themselves. **Figure 1.** Chinese Fam Palm, *Livistona chinensis* is one of many cold hardy palms. Note spines on the leaf petiole. A cold spell can come on slowly or quickly. It is generally thought that a gradual cooling allows plants to acclimate or "harden off." The length of time and The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. U.S. Department of Agriculture, Cooperative Extension Service, University of Florida, IFAS, Florida A. & M. University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Larry Arrington, Dean ^{1.} This document is ENH1094, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date February 2008. Visit the EDIS Web Site at http://edis.ifas.ufl.edu. ^{2.} Edwin R. Duke, Associate Professor, Ornamental Horticulture and Landscape Design and Management, Florida A&M University, College of Engineering Sciences, Technology and Agriculture, 306 Perry-Paige South, Tallahassee, FL 32307; and Gary W. Knox, Extension Specialist and Professor of Environmental Horticulture, University of Florida/IFAS, North Florida Research and Education Center, 155 Research Road, Quincy, FL 32351. depth of hard freeze, wind speed, and relative humidity can also influence how destructive a cold spell might be. Microclimates surrounding a particular plant can influence whether or not a palm will survive a particular cold spell. A plant sheltered by a building or other plants is more likely to survive than one that is exposed. The elevation of a location can also be a factor in a plant's survival-cold air tends to accumulate in low-lying areas. Finally, how successfully a palm can withstand cold is determined by the palm itself. Its age, height, hereditary differences selected out over time by environmental influences in its native habitat, and the overall health of the palm all have an effect on a plant's survival of many environmental conditions, including cold. It would seem simple to predict a palm's cold hardiness by looking at a few variables regarding the palm's native habitat-is the palm native to the cooler northern or southern latitudes rather than nearer the equator? Is the palm native to higher altitudes? -however, some tropical species have been found to be somewhat hardy. Perhaps the best indicator of the potential cold hardiness of a palm is its ability to withstand drought. Many of the more cold tolerant palms come from regions with distinct wet and dry seasons. Freezing stress for any plant is in many ways similar to drought stress, at both the whole-plant and the cellular level-freezing temperatures prevent or reduce the uptake and translocation of water. Tropical or subtropical palms that are adapted to survive the stress of low water conditions (no matter what conditions – cold or drought – are causing it) will have a better chance of surviving cold temperatures. Palms that grow in semi-arid areas, savannas, exposed sandy coastal zones, and on exposed well-drained rocky outcrops are prime candidates for testing in colder climates. # **Growing Conditions for Palms** In many ways, the growing conditions of Florida are ideal for growing palms. Our hot, wet summers and cool, dry winters (relatively speaking) are ideal for the growth of most (but not all) species of palms. In addition, much of Florida is covered with sandy soils underlain by limestone, both of which are conducive to the growth of many palms. The heavier, clay soils found in limited regions of northwest Florida may be made more suitable for the growth of desert-adapted palms by the addition of sand or perlite to 'lighten" the soil. In addition, planting the palm in a raised berm may improve the palm's chance of survival. ### **Maintenance of Palms** Palms are not particularly high maintenance plants, but their care must not be neglected. In Florida, the season for rapid growth coincides with the arrival of high temperatures (80°F or more). It is during that time that maintenance is most important. #### **Mineral Nutrition** Palms suffer quickly and conspicuously from improper mineral nutrition. The problems may arise from either insufficient or improper fertilization. Potassium (K) deficiency is perhaps the most widespread and serious nutritional problem of palms. Florida's sandy soils have a poor ability to retain nutrients. This factor combined with heavy rainfall make Florida's soil low in potassium content. Symptoms of potassium deficiency vary among palm species but typically begin with translucent yellow or orange "freckles" on the leaflets of the oldest leaves. As the symptoms progress, the freckles may be accompanied by necrotic (dead tissue) lesions. Further progression of the deficiency results in marginal necrosis of the leaflets. The leaflets or entire fronds may become withered or frizzled in appearance. The first response of most gardeners to partial necrosis of leaves is to prune off the "offending" frond. Rather than helping, this actually worsens the problem by preventing the palm from translocating the remaining potassium to the plant's growing point. Magnesium (Mg) deficiency is also quite common, especially on date palm (*Phoenix* species). Typical symptoms include a broad band of chlorotic (yellow) tissue along the margin of the older leaves. The center of the leaf remains green. As with potassium deficiency, leaves exhibiting magnesium deficiency should not be removed until they are dead in order to allow the remaining magnesium to be moved to the newer leaves. Prevention is the key to both potassium and magnesium deficiency. Once symptoms appear, they cannot be reversed. Some "palm special" fertilizers are specially formulated to contain elevated (and balanced) levels of potassium and magnesium, as well as nitrogen, in a controlled-release form. Iron (Fe) deficiency sometimes occurs in palms in the growing season following a cold winter or in palms growing in poorly aerated soils. Cold temperatures may induce nutrient deficiency by slowing or preventing nutrient uptake. Waterlogged soil effectively suffocates the roots, also preventing nutrient uptake. Iron deficiency appears first on the newest leaves and is characterized by yellowing between leaf veins. Iron deficiency symptoms may be alleviated by foliar application of iron chelate. This is especially effective for symptoms caused by transient cold spells. However, long term correction of symptoms due to poor soil conditions is best achieved by changing soil conditions. For more detailed information on palm nutrition, refer to IFAS publications, *Nutrient Deficiencies of Landscape and Field-Grown Palms in Florida*, and *Fertilization of Field-grown*^a and *Landscape Palms in Florida*^b. ### Irrigation Most palms tolerate some drought. However, it is a good idea to keep palms well-watered during the active growing period. Keep in mind that "well-watered" does not mean waterlogged. Damage of roots due to waterlogging may induce certain nutrient deficiencies and allow infection by pathogenic fungi or bacteria. The cooler winter months coincide with periods of slower growth. During this time, most palms, but especially those from desert areas, do best with reduced irrigation. #### Insects and Diseases As a group, palms are fairly resistant to pests and diseases. This does not mean, however, that they are pest-free. Certain insects and diseases have proven especially devastating for palms. Palms are not immune to common pests such as caterpillars, aphids, scales, and spider mites. These pests may be controlled by conventional means. A not-so-common problem for many palms is the palmetto weevil (*Rhynchophorus cruentatus*). This weevil is attracted to stressed palms, especially during or after transplanting. The adult female deposits her eggs near the crown of the plant, and the resulting larvae tunnel through the tender meristem tissue. Death of the meristem results in the death of the entire palm. Prevention by reducing stress to the palm is the best method to control the palmetto weevil. The practice of removing the majority of the fronds and roots of a palm during transplanting is one method to reduce transplant stress. For more information, refer to *Palmetto Weevil*, 'Rhynchophorus cruentatus'^c. Several fungal diseases have proven especially damaging to certain palms. *Ganoderma*, *Fusarium*, *Phytophthora*, and *Thielaviopsis* are fungi that cause diseases that may result in the death of affected palms see IFAS publications *Ganoderma Butt Rot of Palms*^d; *Fusarium Wilt of Canary Island Date Palm*^e; *Thielaviopsis Trunk Rot of Palm*^f; and *Bud Rots of Palm*^g. Additional information on diseases may be found in *Leaf Spots and Leaf Blights of Palm*^h. A number of conditions resembling pest damage may be caused by environmental factors. For more information, refer to IFAS publication *Physiological Disorders of Landscape Palms*ⁱ. ### **Pruning** Like all plants, palms benefit from regular pruning. Ideally, pruning of palms should be limited to removing dead fronds. Practically, this is not always acceptable. When fronds with living tissue need to be pruned, remove only the lower fronds extending out less than 90 degrees from the trunk. New growth should never be pruned. The natural growth habit of palms does not allow them to be maintained at a constant height. ### **Treating Cold Damaged Palms** Even with the best of care, palms growing in northern Florida are going to experience temperatures below those that they can tolerate without damage. ### **Effects of Cold Temperatures** Cold weather affects palms in several ways. Growth of the apical bud is reduced, and growth of roots is slowed. This reduced activity often weakens the palm to the point that diseases may become active and kill the palm. Severe cold damage caused by frost or below-freezing temperatures may destroy plant tissues. Due to the nature of the water-conducting tissue in palms, the destruction of stem tissue may severely reduce water conduction for years. As warmer weather returns, plant pathogens, whether primary or secondary, may attack weakened plants through damaged tissue. ### After a Freeze After a palm experiences damaging temperatures, it is important to protect the growing point until active growth resumes. Carefully inspect the damaged fronds before pruning. Leaves should not be removed if they still contain viable green tissue. The green portions of leaves are important for adequate production of sugars from photosynthesis. Allowing the leaves to die naturally allows the nutrients remaining in the leaf to be translocated to other areas where they are needed. Immediately after pruning away dead tissue, spray the palm with a fungicide; copper-containing fungicides often are recommended. This will reduce the level of potentially pathogenic bacteria and fungi. Repeat the fungicide spray as recommended by the fungicide label or about 10 days after the first treatment. Make sure that these sprays cover the damaged tissue and the bud thoroughly. If the fungicide contains copper, do not repeat the sprays more than twice so as to avoid possible copper toxicity. If the soil has frozen, a soil drench of a combination of a broad-spectrum and a water mold-specific fungicide may suppress root diseases. Freeze damage to the palm's vascular tissue in the trunk may limit the ability of the plant to supply water to the canopy. Unlike typical trees, palms do not have the ability to regenerate vascular tissue within the trunk. A sudden collapse of some (or all) of the leaves during the first periods of high temperatures in the spring or summer following a damaging winter freeze may indicate this type of trunk damage. Unfortunately, there is nothing that can be done at this point. Loss of the palm is likely inevitable. #### Palm Selection An important factor to consider when selecting a palm for a particular area is the average minimum temperature that can be expected. The US Department of Agriculture has used historical climatic data to divide the country into climate zones. Each zone represents a 10°F range. Most of northern Florida can be placed in one of two USDA climate zones. Extreme northern parts of the state are placed in the lower half of USDA zone 8 ($10^{\circ} - 19^{\circ}$ F), meaning that the average minimum temperature that may be expected is 15°F. Coastal regions of the northern Florida are typically in the upper half of zone 9 ($20^{\circ} - 29^{\circ}$ F), meaning that the average minimum temperature that may be expected is 20°F. Of course these are only average lows. Single digit lows have been recorded several times in the last 100 years. The table in this publication includes palms exhibiting some degree of cold hardiness. In addition to cold hardiness, intended use and characteristics of the site should be used as selection criteria. Careful study of the list of palms and their characteristics will allow selection of the right palm for the landscape situation. ### **Availability** Palms are increasingly appreciated by consumers. Cold hardy palms are in great demand and the nursery industry is responding with additional production. Currently, palms that are most widely available are in the genera *Butia* (pindo palm), *Chamaedorea* (parlor palm), *Livistona* (fan palm), *Phoenix* (date palm), *Rhapidophyllum* (needle palm), *Rhapis* (lady palm), *Sabal* (palmetto), *Serenoa* (saw palmetto), *Syagrus* (queen palm), *Trachycarpus* (windmill palm), and *Washingtonia* (washington palm; Figure 2). Refer to Table 1 for specific species and their cold hardiness information. Other cold hardy palms may be found at better garden centers and specialty nurseries. **Figure 2.** Washingtonia filifera leaves - note filaments hanging from leaf margins. ### **Endnotes** - a Nutrient Deficiencies of Landscape and Field-Grown Palms in Florida, ILN# ENH1018 / DLN# EP273 (http://edis.ifas.ufl.edu/EP273) - ^b Fertilization of Field-grown and Landscape Palms in Florida, ILN# ENH1009 / DLN# EP261 (http://edis.ifas.ufl.edu/EP261) - ^c Palmetto Weevil, Rhynchophorus cruentatus, ILN# EENY013 / DLN# IN139 (http://edis.ifas.ufl.edu/IN139) - ^d Ganoderma Butt Rot of Palms, ILN# PP54 / DLN# PP100 (http://edis.ifas.ufl.edu/PP100) - ^e Fusarium Wilt of Canary Island Date Palm, ILN# PP215 / DLN# PP139 (http://edis.ifas.ufl.edu/PP139) - f Thielaviopsis Trunk Rot of Palm, ILN# PP219 / DLN# PP143 (http://edis.ifas.ufl.edu/PP143) - ^g Bud Rots of Palm, ILN# PP220 / DLN# PP144 (http://edis.ifas.ufl.edu/PP144) - h Leaf Spots and Leaf Blights of Palm, ILN# PP218 / DLN# PP142 (http://edis.ifas.ufl.edu/PP142) - ⁱ Physiological Disorders of Landscape Palms, ILN# ENH1011 / DLN# EP263 (http://edis.ifas.ufl.edu/EP263) ### References Fox, A.M., D.R. Gordon, J.A. Dusky, L. Tyson, and R.K. Stocker. 2005. IFAS Assessment of the Status of Non-Native Plants in Florida's Natural Areas. http://plants.ifas.ufl.edu/assessment/(Accessed 28 August 2007). Gilman, E.F. 2006. Palms in the Landscape. http://hort.ifas.ufl.edu/woody/palms.html (Accessed 28 August 2007). McClendon, T., W. Roberds and J. LeVert. 2007. Hardy Palms for the Southeast. Southeastern Palm Society, Inc., Apison, TN. 140 pp. Southeastern Palm Society. 2007. Hardy Palms: A Quick Reference. http://www.sepalms.org/Hardy%20Palms/ SPS_Hardy_Palms_A_Quick_Reference.htm (Accessed 28 August 2007). University of Florida/IFAS Fort Lauderdale REC faculty and staff. 2007. Palm Production & Maintenance. http://flrec.ifas.ufl.edu/palm_prod/palm_production.shtml (Accessed 28 August 2007). $\textbf{Table 1.} \ \ \text{Palms} \ \ \text{for northern Florida and their associated characteristics}^3.$ | Scientific
Name | Common
Name | Origin | Native
Habitat | Hardines
s Zone | Typical
Height | Growth
Rate | Habit | Light | Salt
Tolerance | Leaf
Type | Foliage
Color | Comments | |---------------------------|---|---|-------------------------------------|--------------------|-----------------------------|---------------------|------------|------------------------------------|-------------------|-------------------|---|---| | Acoelorrhaphe
wrightii | Paurotis
palm,
Everglades
palm | Southern
Florida,
Caribbean
region | Moist,
swamp-
like
regions | 9a – 11
23°F | 20' | Slow to
moderate | Clustering | Partial
shade
to full
sun | Moderate | Palmate | Green,
silvery-
green
below | Native to the
Florida
Everglades.
Adaptable to drier
soils. Reported to
tolerate 19°F. | | Arenga engleri | Dwarf
sugar palm | Taiwan,
Ryukyu
Islands | Open
forests | 9a – 11
23°F | 6 – 8' | Slow to
moderate | Clustering | Partial
shade
to full
sun | Low | Pinnate | Dark
green
above,
silvery
below | Fiber-covered stems. Fruit contain irritating calcium oxylate crystals. | | Brahea armata | Blue
hesper
palm | Mexico,
southern
California | Arid,
desert
regions | 8a – 10
14°F | 30 – 40';
4 – 8 in
FL | Slow | Solitary | Full sun | Moderate | Costa-
palmate | Blue-
green,
waxy | Does not like high humidity. Requires well-drained soil. | | Butia capitata | Pindo
palm, jelly
palm | Brazil,
Argentina,
Uruguay | Coastal
grassland
plains | 8 – 10
14°F | 15' | Slow | Solitary | Full
sun to
partial
shade | Moderate | Pinnate | Blue-green | Hardiest of the feather-leaved palms. Widely cultivated. Exhibits variability from plant to plant. Var. strictior has fronds with less curve. Hybridizes with members of the genus <i>Syagrus</i> . | | Butia eriospatha | Wooly jelly
palm | Southern
Brazil | Hillsides
to 4000' | 8 – 10
15°F | 15 – 20' | Slow | Solitary | Full
sun to
partial
shade | Moderate | Pinnate | Blue-
green to
blue-gray | Leaf bases covered with brown hair. Faster growing than <i>B. capitata</i> . | | Butia yatay | Yatay palm | South
America | Dry
savannas | 8 – 10
15°F | 35' | Slow | Solitary | Full
sun to
partial
shade | Moderate | Pinnate | Gray-green | Similar to <i>B.</i> capitata, but having more widely spreading leaves. | $\mbox{\bf Table 1.} \mbox{ Palms for northern Florida and their associated characteristics} ^{3}.$ | Scientific
Name | Common
Name | Origin | Native
Habitat | Hardines
s Zone | Typical
Height | Growth
Rate | Habit | Light | Salt
Tolerance | Leaf
Type | Foliage
Color | Comments | |---|-------------------------|--|----------------------------------|--------------------|-------------------|---------------------|------------|---------------------------------|---------------------------------|--------------|------------------|--| | Butia X Jubaea
hybrid | No
common
name | Occurs only in cultivation | Not
applicable | 8a – 10
13°F | 40' + | Moderate | Solitary | Full sun | Moderate | Pinnate | Bluish-
green | Faster growing and
more cold hardy
than either parent.
Massive trunk with
retained leaf bases. | | Butia X Syagrus
hybrid
X Butiagrus
nabonnandii | Mule palm | Occasionally
produced in
the wild in
South
America | Dry
savannas | 8b – 10
19°F | 40' + | Moderate | Solitary | Full sun | Unknown
– likely
moderate | Pinnate | Bluish-
green | Resembles Butia
more than Syagrus
– but with finer,
less stiff foliage.
Faster growing
than Butia. | | Chamaedorea
elegans | Parlor palm | Mexico and
Central
America | Rainforest
understory | 9a – 11
24°F | 3 – 5' | Slow | Solitary | Shade
to
partial
shade | Low | Pinnate | Green | Popular houseplant since Victorian times. Separate male and female plants. Most effective when several planted together. | | Chamaedorea
microspadix | Hardy
bamboo
palm | Mexico | Open
forests | 8b – 11
18°F | 8' | Moderate | Clustering | Shade
to
partial
shade | Low | Pinnate | Dull green | Resembles <i>C.</i> seifrizii and <i>C.</i> erumpens, popular interior palms. | | Chamaedorea
radicalis | Radicalis
palm | Mexico | High
elevation
rainforests | 8b – 11
19°F | 5' | Slow to
moderate | Solitary | Shade
to
partial
shade | Low | Pinnate | Dark green | Often trunkless,
but trunked forms
exist. Separate
male and female
plants. | **Table 1.** Palms for northern Florida and their associated characteristics³. | Scientific
Name | Common
Name | Origin | Native
Habitat | Hardines
s Zone | Typical
Height | Growth
Rate | Habit | Light | Salt
Tolerance | Leaf
Type | Foliage
Color | Comments | |--------------------------|----------------------|--|--|--------------------|-------------------|-----------------------|------------|------------------------------------|----------------------------------|-------------------|--|--| | Chamaerops
humilis | European
fan palm | Mediterran-
ean Region | Arid
coastal
zones to
3000' in
elevation | 8 – 9
16°F | 10' | Slow | Clustering | Full
sun to
partial
shade | Moderate
- may be
variable | Palmate | Green,
blue-green
and silvery
forms | Great variability from one plant to another. Var. cerifera is blue-green in color and is not as cold hardy as the green form. | | Corypha
umbraculifera | Talipot palm | Southern
India and
Sri Lanka | Rainforest | 9a – 11
20°F | 80' | Slow
when
young | Solitary | Full
sun to
partial
shade | Low | Costa-
palmate | Dull green | Flowers after 60 –
80 years and then
dies. Massive
leaves 12 – 18' in
diameter when
mature. Dies after
flowering | | Dypsis baronii | Sugar cane
palm | Madagascar | Mountain
regions
around
1600' | 9a – 11
24°F | 15' | Slow to
moderate | Solitary | Full
sun to
partial
shade | Low | Pinnate | Green | Heat and drought tolerant, but does best with adequate water. | | Dypsis decipiens | Manambe
palm | Madagascar | Dry
highlands
to 6700
feet | 9a – 11
21°F | 15' | Slow | Solitary | Full sun | Low | Pinnate | Blue-green | One of the few cold-tolerant palms with a crown shaft. | | Guihaia argyrata | Dainty lady
palm | Vietnam | Open
forests on
limestone
hills | 9a – 11
22°F | 4' | Slow | Clustering | Shade
to
partial
shade | Low | Palmate | Green
above,
silvery
white
below | First placed in the genus Trachycarpus. Grows best at higher pH. | | Howea
forsteriana | Kentia palm | Lord Howe
Island, New
South
Wales,
Australia | | 9a – 11
24°F | 6 – 14' | Slow | Solitary | Partial
shade | Moderate | Pinnate | Dark
green
above,
lighter
below | Excellent container plant. | $\mbox{\bf Table 1.} \mbox{ Palms for northern Florida and their associated characteristics} ^{3}.$ | Scientific
Name | Common
Name | Origin | Native
Habitat | Hardines
s Zone | Typical
Height | Growth
Rate | Habit | Light | Salt
Tolerance | Leaf
Type | Foliage
Color | Comments | |------------------------|------------------------|-----------------------------------|--|--------------------|-------------------|---------------------|----------|------------------------------------|-------------------|-------------------|---|--| | Jubaea chilensis | Chilean
wine palm | Chile | Desert,
coastal
valleys | 8b – 10a
14°F | 50-80' | Very slow | Solitary | Full sun | Low | Pinnate | Dull green
above,
gray below | Requires well
drained soil. Has
the thickest trunk
of any palm – up
to 6 feet in
diameter. | | Latania
Iontaroides | Red latan
palm | Reunion
Island
(Mascarenes) | Cliffs and coastal ravines | 9a – 11
24°F | 30' | Slow | Solitary | Full sun | Moderate | Costa-
palmate | Gray-
green and
slightly
waxy | Distinctive red coloration when young. Drought tolerant. | | Livistona
australis | Australian
fan palm | Australia | Rainforest
understory | 9a – 11
22°F | 40' | Slow | Solitary | Partial
shade
to full
sun | Moderate | Palmate | Deep,
glossy
green | Secondmost cold hardy <i>Livistona</i> after <i>L. chinensis</i> . | | Livistona
chinensis | Chinese
fan palm | China,
southern
Japan | Open
forests | 8b – 11
18°F | 25' | Slow | Solitary | Partial
shade
to full
sun | Moderate | Palmate | Olive
Green | Often defoliated by hard freezes, but re-grows a new canopy in spring. Rarely forms trunk in northern regions. Armed petiole | | Livistona
decipiens | Ribbon fan
palm | Australia | River
banks and
coastal
areas | 9a – 11
23°F | 30' | Slow to
moderate | Solitary | Partial
shade
to full
sun | Moderate | Palmate | Deep
green
above,
waxy gray
below | The leaves are deeply divided and the long segments hang downward in a curtain-like manner. | $\textbf{Table 1.} \ \ \text{Palms} \ \ \text{for northern Florida and their associated characteristics}^3.$ | Scientific
Name | Common
Name | Origin | Native
Habitat | Hardines
s Zone | Typical
Height | Growth
Rate | Habit | Light | Salt
Tolerance | Leaf
Type | Foliage
Color | Comments | |-----------------------------------|-------------------------------|---------------------------------------|--------------------------------------|--------------------|-------------------|----------------|----------------------|----------|-------------------|-------------------|--------------------|---| | Nannorrhops
ritchiana | Mazari palm | Afghanistan,
Pakistan to
Arabia | Desert
mountain
regions | 7b – 11
7°F | 10' | Slow | Clustering | Full sun | Moderate | Costa-
palmate | Blue-green | Requires well-drained soil. After flowering and fruiting, a stem will eventually die back, but not before branching just below the crown. | | Phoenix
canariensis | Canary
Island date
palm | Canary
Islands | Desert
regions,
600 –
1900' | 8b – 11
19°F | 40' | Very slow | Solitary | Full sun | Moderate | Pinnate | Dull deep
green | Form impressive,
large specimens.
Poorly drained
sites should be
avoided. | | Phoenix
dactylifera | Date palm | North Africa – exact origin unknown | Desert
regions | 8b – 11
19°F | 40 - 50' | Slow | Slowly
clustering | Full sun | High | Pinnate | Gray-green | Most landscape
specimens
transplanted from
date groves in AZ
or CA. | | Phoenix
reclinata ⁵ | Senegal
date palm | Africa | Desert
regions | 9a – 11
25°F | 24 – 30' | Moderate | Clustering | Full sun | Moderate | Pinnate | Dark green | Suckers vigorously. Slender trunks. Thicker trunks may indicate hybridization with other <i>Phoenix</i> species, and may be indicative of greater cold tolerance. | **Table 1.** Palms for northern Florida and their associated characteristics³. | Scientific
Name | Common
Name | Origin | Native
Habitat | Hardines
s Zone | Typical
Height | Growth
Rate | Habit | Light | Salt
Tolerance | Leaf
Type | Foliage
Color | Comments | |---------------------------|----------------------|--|---------------------------------|--------------------|-------------------|----------------|------------|------------------------------------|-------------------|--------------|---|---| | Phoenix
roebelenii | Pygmy
date palm | Southeast
Asia –
Laos,
Vietnam,
Thailand | Rainforests | 9a – 11
24°F | 10' | Slow | Solitary | Partial
shade
to full
sun | Low | Pinnate | Glossy
green | May require some protection in particularly cold periods. Separate male and female plants. Adapts well to container production. | | Phoenix
sylvestris | Wild date
palm | India | Desert
regions | 9a – 11
22°F | 40' | Slow | Solitary | Full sun | Moderate | Pinnate | Blue-green | Shorter leaves than <i>P. canariensis</i> and <i>P. dactylifera</i> . Hybridizes with other <i>Phoenix</i> species. | | Phoenix
theophrastii | Cretan
date palm | Crete,
limited
areas of
Turkey | Arid,
desert-like
regions | 8b – 11
19°F | 25' | Slow | Clustering | Full sun | Moderate | Pinnate | Silvery-
gray | Similar to <i>P.</i> reclinata, but more cold hardy. | | Rhapidophyllum
hystrix | Needle
palm | Southeastern
US | Dry, pine flatwoods | 7b – 10a
5°F | 5' | Slow | Clustering | Partial
shade
to full
sun | Moderate | Palmate | Dark
green
above,
silvery
below | Florida native. Separate male and female plants. 10 – 12" needles from crown. | | Rhapis excelsa | Lady palm | China | Forest
understory | 9a – 11
21°F | 7' | Moderate | Clustering | Shade
to
partial
shade | Moderate | Palmate | Shiny
Green | Leaves tend to yellow with too much sun. Excellent container plant. Variegated forms available, but very expensive. | | Rhapis humilis | Slender
lady palm | China | Known
only in
culture | 9a – 11
21°F | 13' | Slow | Clustering | Shade
to
partial
shade | Moderate | Palmate | Green,
slightly
shiny | Smaller stems and leaves than <i>R</i> . excelsa. All plants are male; no females exist. | $\mbox{\bf Table 1.} \mbox{ Palms for northern Florida and their associated characteristics} ^{3}.$ | Scientific
Name | Common
Name | Origin | Native
Habitat | Hardines
s Zone | Typical
Height | Growth
Rate | Habit | Light | Salt
Tolerance | Leaf
Type | Foliage
Color | Comments | |------------------------|-----------------------------|---|--|--------------------|-------------------|---------------------|----------|------------------------------------|---------------------|------------------------------------|--------------------------------|---| | Sabal
bermudana | Bermuda
palmetto | Bermuda | Sandy,
dry regions | 8b – 11
16°F | 25' | Slow | Solitary | Full sun | Moderate
to high | Costa-
palmate | Blue-green | Requires
well-drained
location. | | Sabal causiarum | Puerto
Rican hat
palm | Puerto Rico | Sandy,
dry regions | 8b – 11
19°F | 50' | Slow | Solitary | Full sun | Moderate
to high | Costa-
palmate | Green | Massive trunk, not frequently seen in the landscape. | | Sabal
domingensis | Dominican
palmetto | Haiti,
Hispanola,
eastern
Cuba | Hot dry
inland
areas to
3300' | 9a – 11
22°F | 60' | Slow to
moderate | Solitary | Full sun | Moderate
to high | Costa-
palmate | Green | Large whitish
trunk. Thrives on
sandy soils | | Sabal etonia | Scrub
palmetto | Southeastern
US | Dry
scrublands | 8b – 10
16°F | 5' | Slow | Solitary | Partial
shade
to full
sun | Moderate | Costa-
palmate
to
palmate | Dull green
to
blue-green | Similar to <i>S. minor</i> but has smaller, deeply folded leaves. | | Sabal mexicana | Rio Grande
palmetto | Texas,
Mexico, El
Salvador | Arid,
desert-like
regions | 8b – 11
17°F | 40' | Slow | Solitary | Full sun | Moderate | Costa-
palmate | Emerald
green | Drought tolerant,
but grows faster
with adequate
water. | | Sabal minor | Dwarf
palmetto | Southeastern
US | Understory
of pine
flatwoods | 7a – 10b
5°F | 6' | Slow | Solitary | Partial
shade
to
shade | Moderate | Costa-
palmate
to
palmate | Green to
blue-green | Does not form a trunk. Larger crown than S. palmetto. | | Sabal palmetto | Cabbage
palm | Southeastern
US | | 8a – 11
10°F | 30 – 40' | Slow | Solitary | Full sun | High | Costa-
palmate | Dull green | The state tree of both FL and SC. Adapts well to many different soils and situations. | | Sabal rosei | Llana Palm | Western
Mexico | Dry
savannas | 8a – 11
10°F | 25 – 30' | Slow | Solitary | Full sun | | Costa-
palmate | Blue-green | Drought and flood tolerant. Trunk is more slender than that of <i>S. palmetto</i> . | | Sabal
umbraculifera | Hispanolian
palm | Santo
Domingo | | 7b – 11
9°F | 60' | Slow | Solitary | Full sun | High | Costa-
palmate | Dull green | Stout, heavy trunk
with very large
leaves. Thrives on
sandy soil. | $\mbox{\bf Table 1.} \mbox{ Palms for northern Florida and their associated characteristics} ^{3}.$ | Scientific
Name | Common
Name | Origin | Native
Habitat | Hardines
s Zone | Typical
Height | Growth
Rate | Habit | Light | Salt
Tolerance | Leaf
Type | Foliage
Color | Comments | |---------------------------------------|-------------------------------------|-----------------------------------|---|--------------------|-------------------|----------------|----------|------------------------------------|-------------------|-------------------|---|--| | Sabal uresana | Soronan
palmetto | Mexico | Open
forest | 8b – 11
14°F | 60' + | Slow | Solitary | Full sun | Moderate | Costa-
palmate | Silvery-
blue | Bluish tint to foliage becomes less distinct as the plant ages. | | Serenoa repens | Saw
palmetto | Southeaster
n US | Dry pine
flatwoods | 8b – 11
18°F | 3 – 6' | Slow | Clumping | Partial
shade
to full
sun | High | Palmate | Green or blue green, waxy | Florida native. Large specimens do not transplant easily. | | Syagrus
romanzoffiana ⁶ | Queen palm | Brazil to
Argentina | Lowland
humid
forests | 9a – 11
23°F | 30' | Fast | Solitary | Full
sun to
partial
shade | Moderate | Pinnate | Dark green | Susceptible to Mn deficiency on high-pH soil. Produces large numbers of fruit which some consider messy. | | Trachycarpus
fortunei | Windmill
palm,
chusan
palm | China | Mountain
regions to
7500' | 8a – 10a
10°F | 20' | Slow | Solitary | Partial
shade
to full
sun | Moderate | Palmate | Dark
green
above,
silvery
below | Fiber-covered trunk. Very cold hardy, even tolerating light snow. | | Trachycarpus
latisectus | Windamere
palm | Himalayas
of northern
India | Mountain
regions to
8000' | 7a – 10a
1°F | 18' | Slow | Solitary | Partial
shade
to full
sun | Moderate | Palmate | Dark
green | Leaves shed
naturally, leaving a
smooth slender
trunk. Unknown
before 1992. | | Trachycarpus
martianus | Himilayan
windmill
palm | China,
Nepal, India | Mountain
regions | 9a – 10a
23°F | 20' | Slow | Solitary | Partial
shade
to full
sun | Moderate | Palmate | Green
above,
silvery
below | Slimmer trunk than
T. fortunei. New
growth covered by
whitish
pubescence. | | Trachycarpus
oreophilus | Thai
mountain
fan palm | Northwest
Thailand | Rocky
outcrops,
mountain
regions | 8a – 10a
14°F | 30' | Slow | Solitary | Partial
shade
to full
sun | Unknown | Palmate | Green
above,
silvery
below | Small compact
crown of foliage.
Smooth, slender
trunk. | $\mbox{\bf Table 1.} \mbox{ Palms for northern Florida and their associated characteristics} ^{3}.$ | Scientific
Name | Common
Name | Origin | Native
Habitat | Hardines
s Zone | Typical
Height | Growth
Rate | Habit | Light | Salt
Tolerance | Leaf
Type | Foliage
Color | Comments | |--------------------------------------|---|--------------------------|-------------------------------------|--------------------|---|---------------------|----------|------------------------------------|-------------------|-------------------|---|--| | Trachycarpus
takil | Kamaon
fan palm | North
central India | Mountain
regions to
8000' | 7b – 10a
6°F | 25' | Slow to
moderate | Solitary | Partial
shade
to full
sun | Unknown | Palmate | Green | Compact growth habit. Smooth trunk. | | Trachycarpus
wagnerianus | Wagner's
fan palm | Japan | Unknown
in the wild | 8a – 10a
13°F | 10' | Slow | Solitary | Partial
shade
to full
sun | Unknown | Palmate | Green
above,
silver
below | Similar to <i>T.</i> fortunei, but smaller. Fiber-covered trunk. | | Trithrinax
acanthocoma | Spiny fiber
palm | Southern
Brazil | Open
forests,
dry
savannas | 9a – 11
20°F | 15' | Slow | Solitary | Full sun | Moderate | Palmate | Deep
green
above,
whitish
below | Not widely cultivated. Long spines on trunk. | | Trithrinax
campestris | Blue
needle
palm,
Caranday
palm | Argentina
and Uruguay | Arid
regions | 8a – 11
13°F | 12' | Slow | Clumping | Full sun | High | Palmate | Blue-green | Erect, stiff leaflets. Drought tolerant. Fiber-covered trunk with stiff spines. Good drainage essential. | | Washingtonia
filifera | California
Washington
palm | California,
Mexico | Desert
regions | 8a – 11
12°F | 50' | Moderate | Solitary | Full sun | Moderate | Costa-
palmate | Grayish-
green | Requires well-drained soil. Larger diameter trunk than <i>W.</i> robusta. Hybridizes with <i>W.</i> robusta. | | Washingtonia
robusta ⁷ | Washington
palm | Mexico | Desert
regions | 9a – 11
22°F | 70 –
100'; 25'
in
northern
FL | Fast | Solitary | Full sun | Moderate | Costa-
palmate | Bright
green | Though from desert regions, fastest growth occurs with regular irrigation. Requires well-drained soil. | **Table 1.** Palms for northern Florida and their associated characteristics³. | Scientific | Common | Origin | Native | Hardines | Typical | Growth | Habit | Light | Salt | Leaf | Foliage | Comments | |------------|--------|--------|---------|----------|---------|--------|-------|-------|-----------|------|---------|----------| | Name | Name | | Habitat | s Zone | Height | Rate | | | Tolerance | Type | Color | | ³Non-native palms found in Florida's natural areas are indicated, with footnotes stating their status as established by the "IFAS Assessment of the Status of Non-native Plants in Florida's Natural Areas" (Fox et al. 2005). Non-native palms without footnotes have not been reported in Florida's natural areas and/or have not yet been assessed using the IFAS Assessment. ⁴In north Florida this species is not considered a problem and may be recommended. In central Florida, this species can be used but it should be treated with caution and managed to prevent its escape (counties are listed by zone at: http://plants.ifas.ufl.edu/assessment/pdfs/assess_counties.pdf). Note that other conclusions may apply in south Florida. ⁵This species is not considered a problem in north and central Florida and may be recommended (counties are listed by zone at: http://plants.ifas.ufl.edu/assessment/pdfs/assess_counties.pdf). Note that other conclusions may apply in south Florida. ⁶This species is not considered a problem in north and central Florida and may be recommended (counties are listed by zone at: http://plants.ifas.ufl.edu/assessment/pdfs/assess_counties.pdf). Note that other conclusions may apply in south Florida. ⁷This species is not considered a problem in north and central Florida and may be recommended (counties are listed by zone at: http://plants.ifas.ufl.edu/assessment/pdfs/assess_counties.pdf). Note that other conclusions may apply in south Florida.