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1. INTRODUCTION

For accurate prediction of weather and near-term climate, root-zone soil moisture is one of the most crucial
components driving the surface hydrological processes. Soil moisture in the top meter is also very important
because it governs moisture and energy fluxes at the land-atmosphere interface and it plays a significant role
in partitioning of the precipitation into runoff and infiltration.

Energy and moisture fluxes at the land surface can be estimated by Soil-Vegetation-Atmosphere-Transfer
(SVAT) models. These models are typically used in conjunction with climate prediction models and
hydrological models. Even though the biophysics of moisture and energy transport is well-captured in most
current SVAT models, the computational errors accumulate over time and the model estimates of soil
moisture diverge from reality. One promising way to significantly improve model estimates of soil moisture
is by assimilating remotely sensed data that are sensitive to soil moisture, for example microwave brightness
temperatures, and updating the model state variables.

The microwave brightness at low frequencies (< 10 GHz) is very sensitive to soil moisture in the top few
centimeters in most vegetated surfaces. Many studies have been conducted in agricultural areas such as bare
soil, grass, soybean, wheat, pasture, and corn to understand the relationship between soil moisture and
microwave remote sensing. Most of these experiments conducted in agricultural regions have been short-
term experiments that captured only a part of growing seasons. It is important to know how microwave
brightness signature varies with soil moisture, evapotranspiration (ET), and biomass in a dynamic
agricultural canopy with a significant biomass (4-6 kg/m?) throughout the growing season.

2. OBJECTIVES

The goal of MicroWEX-5 was to understand the land-atmosphere interactions during the growing season of
corn, and their effect on observed microwave brightness signatures at 6.7 GHz and 1.4 GHz, matching that
of the satellite-based microwave radiometers, AMSR, and the SMOS mission, respectively. Specific
objectives of MicroWEX-5 are:
1. To collect passive microwave and other ancillary data to develop and calibrate a dynamic
microwave brightness model for corn
2. To collect energy and moisture flux data at land surface and in soil to develop and calibrate a
dynamic SVAT model for corn
3. To evaluate feasibility of soil moisture retrievals using passive microwave data at 6.7 and 1.4 GHz
for the growing corn canopy

3. FIELD SETUP

MicroWEX-5 was conducted by the Center for Remote Sensing, Agricultural and Biological Engineering
Department at the Plant Science Research and Education Unit (PSREU), IFAS, Citra, FL. Figure 1 and 2
show the location of the PSREU and the study site for the MicroWEX-5, respectively. The study site was
located at the west side of the PSERU. The dimensions of the study site were a 183 m X 183 m. A linear
move system was used for irrigation. The corn was planted on March 9 (Day of Year (DoY) 68) in 2006, at
an orientation 60° from East as shown in Figure 3. The crop spacing was about 8 cm and the row spacing
was 76.2 cm (30 inches). Instrument installation began on March 10 (DoY 69). The instruments consisted of
a ground-based microwave radiometer system and micrometeorological stations. The ground-based
microwave radiometer system was installed at the location shown in Figure 3, facing south to avoid the
radiometer shadow interfering with the field of view as seen in Figure 3.
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Figure 1. Location of PSREU/IFAS (from http://pléntscienceunit.ifas.uﬂ.edu/directio;ls.htm)
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Figure 2. Location of the field site for MicroWEX-5 at the UF/IFAS PSREU (from
http://plantscienceunit.ifas.ufl.edu/images/location/p1.jpg)
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The micrometeorological station was installed at the center of the field and included soil heat flux plates and
the eddy covariance system. Two raingauges were installed at the east and west edge of the radiometer
footprints. Two additional raingauges also were installed at the east and west edge of the field to capture the
irrigation. Three datalogging stations with soil moisture, soil heat flux, and soil temperature sensors
installed were set up at the Northwest, East, and Southwest locations shown in Figure 3. A relative humidity
(RH) sensor, temperature sensor, and net radiometer were installed at the Northwest station. This report
provides detailed information regarding sensors deployed and data collected during the MicroWEX-5.
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Figure 3. Layout of the sensors during MicroWEX-5.

4. SENSORS

MicroWEX-5 had three major types of instrument subsystems: the ground-based University of Florida C-
band and L-band Radiometers, the micrometeorological subsystem, and the soil subsystem.
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4.1 University of Florida Microwave Radiometer Systems

4.1.1 University of Florida C-band Microwave Radiometer (UFCMR)

Microwave brightness temperatures at 6.7GHz (A = 4.48 cm) were measured every 15 minutes using the
University of Florida’s C-band Microwave Radiometer system (UFCMR) (Figure 4 (a)). The radiometer
system consisted of a dual polarization total power radiometer operating at the center frequency of 6.7 GHz
housed atop a 10 m tower installed on a 16’ trailer bed. UFCMR was designed and built by the Microwave
Geophysics Group at the University of Michigan. It operates at the center frequency at 6.7 GHz which is
identical to one of the center frequencies on the space-borne Advanced Microwave Scanning Radiometer
(AMSR) aboard the NASA Aqua Satellite Program. UFCMR observed the 3.70 m x 6.10 m footprint from a
height of 5.90m. A rotary system was used to rotate the look angle of the UFCMR both for field
observations and sky measurements. The brightness temperatures were observed at an incidence angle of
50°. The radiometer was calibrated at least once every week with a microwave absorber as warm load and
measurements of sky at several angles as cold load. Figure 4 (b) and 4 (c) show the close-up of the rotary
system and the antenna of the UFCMR, respectively. Table 1 lists the specifications of UFCMR. Figure A-1
shows the V- & H-pol brightness temperatures observed during MicroWEX-5.

Table 1. UFCMR specifications

Parameter Qualifier Value
Frequency Center 6.7 GHz
Bandwidth 3dB 20 MHz
Beamwidth 3 dB V-pol elevation® 23°

3 dB V-pol azimuth " 21°

3 dB H-pol elevation ® 21°

3 dB H-pol azimuth ¢ 23°
Isolation >27 dB
Polarizations Sequential V/H
Receiver temp 437K
Noise Figure From T, 399 dB
RF gain 85 dB
NEDT 1 sec 0.71 K

8 sec 0.25 K

(a). sidelobes < -33 dB, (b). sidelobes < -28 dB, (c). sidelobes < -27 dB, (d). sidelobes < -35 dB
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Figure 4.(b) and (). T side view of the UFCMR shoin the rotary system and the front view of the
UFCMR showing the receiver antenna.

4.1.1.1 Theory of operation

UFCMR uses a thermoelectric cooler (TEC) for thermal control of the Radio Frequency (RF) stages for the
UFCMR. This is accomplished by the Oven Industries “McShane” thermal controller. McShane is used to
cool or heat by Proportional-Integral-Derivative (PID) algorithm with a high degree of precision at 0.01°C.
The aluminum plate to which all the RF components are attached is chosen to have sufficient thermal mass
to eliminate short-term thermal drifts. All components attached to this thermal plate, including the TEC, use
thermal paste to minimize thermal gradients across junctions.

5
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The majority of the gain in the system is provided by a gain and filtering block designed by the University
of Michigan for the STAR-Light instrument (De Roo, 2003). The main advantage of this gain block is the
close proximity of all the amplifiers, simplifying the task of thermal control. This gain block was designed
for a radiometer working at the radio astronomy window of 1400 to 1427 MHz, and so the receiver is a
heterodyne type with downconversion from the C-band RF to L-band. To minimize the receiver noise
figure, a C-band low-noise amplifier (LNA) is used just prior to downconversion. To protect the amplifier
from saturation due to out of band interference, a relatively wide bandwidth, but low insertion loss,
bandpass filter is used just prior to the amplifier. Between the filter and the antenna are three components: a
switch for choosing polarization, a switch for monitoring a reference load, and an isolator to minimize
changes in the apparent system gain due to differences in the reflections looking upstream from the LNA.

The electrical penetrations use commercially available weatherproof bulkhead connections (Deutsch
connectors or equivalent). The heat sinks have been carefully located employing RTV (silicone sealant) to
seal the bolt holes. The radome uses 15mil polycarbonate for radiometric signal penetration. It is sealed to
the case using a rubber gasket held down to the case by a square retainer.

The first SMA connection is an electromechanical latching, which is driven by the Z-World control board
switches between V- and H-polarization sequentially. The SMA second latching which switches between
the analog signal from the first switch and the reference load signal from a reference load resistor sends the
analog signal to a isolator, where the signal within 6.4 to 7.2 GHz in radiofrequency are isolated. Then the
central frequency is picked up by a 6.7 GHz bandpass filter, which also protects the amplifier to saturation.
A Low Noise Amplifier (LNA) is used to eliminate the noise figure and adjust gain. A mixer takes the input
from the LNA and a local oscillator to output a 1.4 GHz signal to STAR-Lite. After the Power Amplifier
and Filtering Block (Star-Lite back-end), the signal is passed through a Square Law Detector and a Post-
Detection Amplifier (PDA). UFCMR is equipped with a microcontroller that has responsibility for taking
measurements, monitoring the thermal environment, and storing data until a download is requested. A
laptop computer is used for running the user interface named FluxMon to communicate with the radiometer
through Radiometer Control Language (RadiCL). The radiometer is configured to maintain a particular
thermal set point, and make periodic measurements of the brightness at both polarizations sequentially and
the reference load. The data collected by the radiometer are not calibrated within the instrument, since
calibration errors could corrupt an otherwise useful dataset. Figure 5 shows the block diagram of UFCMR.
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Figure 5. Block diagram of the University of Florida C-band Radiometer (De Roo, 2002).

4.1.2 University of Florida L-band Microwave Radiometer (UFLMR)

Microwave brightness temperature at 1.4GHz (A = 21.0 cm) were measured every 15 minutes using the
University of Florida’s L-band Microwave Radiometer system (UFLMR) (Figure 6 (a)). The radiometer
system consisted of a single polarization total power radiometer operating at the center frequency of 1.4
GHz housed atop a 9.14 m tower installed on a 16’ trailer bed. UFLMR was designed and built by the
Microwave Geophysics Group at the University of Michigan. It operates at the center frequency at 1.4 GHz
which is identical to one of the center frequencies on the space borne Soil Moisture and Ocean Salinity
(SMOS) mission. UFLMR observed the 4.29 m x 7.08 m footprint from a height of 6.81 m. A rotary system
was used to rotate the look angle of the UFLMR both for field observations and sky measurements. The
brightness temperatures were observed at an incidence angle of 50°. The radiometer was calibrated at least
every week with a microwave absorber as warm load and measurements of sky at several angles as cold
load. Figure 6 (b) and 6 (c) show the close-up of the rotary system and the antenna of the UFLMR,
respectively. Table 2 lists the specifications of UFLMR. Figure A-1 shows the H-pol brightness
temperatures observed during MicroWEX-5.
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Figure 6 (b) and (c). The side view of the UFLMR showing the rotary system and the front view of the
UFLMR showing the receiver antenna.
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4.1.2.1 Theory of operation

UFLMR is similar to UFCMR in many respects, using a thermoelectric cooler (TEC) for thermal control, a
similar electromechanical switching mechanism and a Z-World controller; the PDA is the same, and the
software is a newer version of RadiCL. The RF block is designed for V- and H-pol switching, like the
UFCMR, however, the UFLMR’s septum horn antenna is single-polarized. As a result, only H-pol signal
are guided from antenna to coax to the RF block, and the V-pol input to the RF block is an open circuit.

In the RF block, the first switch alternates between “V”’- and H-pol and the second alternates between the
reference load and the signal from the first switch. An isolator prevents reflections of the input signal. After
the isolator, the signal goes through a bandpass filter and then an LNA, followed by a series of bandpass
filters and Power Amplifiers before the Square Law Detector and the PDA. The microcontroller logs
voltage and physical temperature measurements. Figure 7 shows the block diagram of UFLMR.

Table 2. UFLMR specifications

Parameter Qualifier Value
Frequency Center 1.4 GHz
Bandwidth 3dB 20 MHz
Beamwidth 3 dB H-pol elevation® 22.5°

3 dB H-pol azimuth® 20.0°
Polarizations Single H
Receiver temp 179K
Noise Figure From T,.. 2.1dB
RF gain 79 dB
NEDT 0.5K

(a). sidelobes -20 dB, (b). sidelobes < -30 dB
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4.2 Eddy Covariance System

A Campbell Scientific eddy covariance system was located at the center of the field also shown in Figure 8.
The system included a CSAT3 anemometer and KH20 hygrometer. CSAT3 is a three dimensional sonic
anemometer, which measures wind speed and the speed of sound on three non-orthogonal axes. Orthogonal
wind speed and sonic temperature are computed from these measurements. KH20 measures the water vapor
in the atmosphere. Its output voltage is proportional to the water vapor density flux. Latent and sensible heat
fluxes were measured every 30 minutes. The height of the eddy covariance system was 1.8 m from the
ground and the orientation of the system was 212° toward southwest. On DoY 109, the sensor was moved to
a height of 2.71 m, with the same orientation. Table 3 shows the list of specifications of the CSAT3. Data
collected by the eddy covariance system have been processed for coordinate rotation (Kaimal and Finnigan,
1994; Wilczak et al., 2001), WPL (Webb et al., 1980), oxygen (van Dijk et al., 2003), and sonic temperature
corrections (Schotanus et al., 1983). Figure A-2 shows the processed latent and sensible heat fluxes
observed during MicroWEX-5, and Figure A-6 shows wind speed and direction.

Figure 8. Eddy covariance system

Table 3. Specifications of the CSAT3 (Campbell Scientific, 1998)

Description Value
Measurement rate 1to 60 Hz
Noise equivalent wind 1 mm/sec in horizontal wind speed and

0.5 mm/sec in vertical wind speed

Wind measurement offset <+4 cm/sec over =30 to 50°C
Output signals Digital SDM or RS-232 and Analog
Digital output signal range +65.535 m/sec in wind speed and 300 to 366 m/sec in speed of sound
Digital output signal resolution 0.25 to 2 mm/sec in vertical wind speed and 1 mm/s in speed of sound
Analog output signal range +32.768 to +£65.536 m/sec in wind speed and 300 to 366 m/sec in speed of sound
Analog output signal resolution +8.192 mm/sec in vertical wind speed and 16 mm/sec in speed of sound
Measurement path length 10.0 cm vertical and 5.8 cm horizontal
Transducer path angle from horizontal | 60 degrees
Transducer 0.64 cm in diameter
Transducer mounting arms 0.84 cm in diameter
Support arms 1.59 cm in diameter
Dimensions: anemometer head 473 cmx42.4 cm
Dimensions: electronics box 26cmx 16 cmx 9 cm
Dimensions: carry case 71.1cmx 58.4cmx 33 cm
Weight: anemometer head 1.7kg
Weight: electronics box 2.8 kg
Weight: shipping 16.8 kg
Operating temperature range -30°C to 50°C
Power requirement: voltage supply 10 to 16 VDC
Power requirement: current 200 mA at 60 Hz measurement rate and 100 mA at 20 Hz measurement rate
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4.3 Net Radiometer

A Kipp and Zonen CNR-1 four-component net radiometer (Figure 9) was located at the center of the field to
measure up- and down-welling short- and long-wave infrared radiation. The sensor consists of two
pyranometers (CM-3) and two pyrgeometers (CG-3). The sensor was installed at the height of 2.66 m above
ground and facing south. Table 4 shows the list of specifications of the CNR-1 net radiometer. Figure A-3
shows the up- and down-welling short- and long-wave radiation observed during MicroWEX-5.

Figure 9. CNR-1 net radiometer

Table 4. Specifications of the CNR-1 net radiometer (Campbell Scientific, 2006a)

Description Value
Measurement spectrum: CM-3 305 to 2800 nm
Measurement spectrum: CG-3 5000 to 50000 nm
Response time 18 sec
Sensitivity 10 to 35 uwV/(W/m?)
Pt-100 sensor temperature measurement | DIN class A
Accuracy of the Pt-100 measurement +2K

Heating

Resistor 24 ohms, 6 VA at 12 volt

Maximum error due to heating: CM-3

10 W/m?

Operating temperature -40° to 70°C
Daily total radiation accuracy +10%
Cable length 10 m
Weight 4 kg

4.4 Precipitation

Precipitation was determined using four tipping-bucket raingages, two on either side of the radiometer
footprints and two on either side of the field. The West footprint raingage failed soon after the experiment
started. Figure A-4 shows the observed precipitation.

4.5 Air Temperature and Relative Humidity

Air temperature and relative humidity were measured every 15 minutes at the Northwest station using a
Campbell Scientific HMP45C Temperature and Relative Humidity Probe. Figure A-5 shows the relative
humidity and air temperature observations during MicroWEX-5 at a height of 2.0 m. Table 5 shows the list
of specifications.
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Table 5. Specifications of the HMP45C (Campbell Scientific, 2006¢)

Description Value
Temperature Range -40° to 60°C
Temperature Accuracy 0.2° (-40°C) to 0.5° (20°C)
Relative Humidity Range 0 to 100%
Relative Humidity Accuracy @ 20°C 2% (0-90%) to 3% (90-10%) RH
RH Response to Temperature 0.05% RH/°C
Response Time 15 seconds at 20°C, 90%RH
Temperature Measurement 1000 Q PRT, IEC 751 1/3 Class B
Relative Humidity Measurement HUMICAP 180

4.6 Canopy Air Temperature

Air temperature, at six heights within the canopy, was measured every 15 minutes at the Northwest station
using thermistors on a PVC pipe, as shown in Figure 10. The heights were adjusted as the canopy grew,
listed in Table 6. Figures A-7 through A-9 show the observations of canopy temperature during
MicroWEX-5.

Table 6. Canopy thermistor heights
DoY Measurement heights (cm)

72 1 0,5,10,15,20,25

102 | 0,5,10,15,30,40

109 | 0,15,30,45,60,75

114 | 0,40,60,80,100,120

118 | 0,40,85,110,135,160

1251 0,40,75,110,145,180

Figure 10. Canopy thermistors. .
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4.7 Soil Moisture and Temperature Probes

Twenty-eight Campbell Scientific time-domain water content reflectometers (CS616) were used to measure
soil volumetric water content of 2, 4, 8, 16, 32, 64, and 120 cm every 15 minutes. At the East station, there
were also two deep TDRs, one each by the Northeast and Southeast wells at approximately 1.6 m. At the
Northwest station, the deep sensor was by the Northwest well at 1.45 m, the Southwest deep TDR was at
1.8 m. The observations of soil moisture were duplicated at the depth of 2 cm. One of the Northwest
thermistors gave spurious results and the East station 2 cm thermistor failed less than 24 hours after it was
installed, so the data from these sensors were not included. The calibration coefficients for the CS616
probes are listed in Table 7. Figure A-10 shows the soil temperatures observed at the depths of 2 cm, 4 cm,
8 cm, 16 cm, 32 cm, 64 cm, and 120 cm, at Northwest station during MicroWEX-5. Figure A-11 and A-12
show the soil temperatures observed at the same depths at the Southwest station and East station. Figure A-
13, A-14, and A-15 show the volumetric soil moisture content observed at the same depths plus the deep
TDRs for the Northwest, Southwest, and East stations respectively.

Table 7. The calibration coefficients for the CS616 probes (Campbell Scientific, 2006b)

Coefficient | Value
Cy -0.187
C, 0.037
C, 0.335

4.8 Soil Heat Flux Plates

Two Campbell Scientific soil heat flux plates (HFT-3) were used to measure soil heat flux at the depth of 2
cm at the Northwest station. The Eddy Covariance System, East, and Southwest stations each had one SHF
plate at 2cm, though the observations from the soil heat flux plate near the Eddy Covariance System were
significantly higher than the ones at the Northwest, East, and Southwest stations. The data from the Eddy
Covariance System soil heat flux plates are not included. Figure A-16 shows the soil heat fluxes observed at
all locations.

5. SOIL SAMPLING

5.1 Soil Surface Roughness

Soil roughness was measured near the radiometer footprints at the beginning (DoY 69) and end (DoY 150)
of the season by Dr. Clint Slatton and Mr. Juan Fernandez from the Geosensing Systems Engineering group
at the Civil Engineering Dept. at UF, using a 3D laser scanner for both days (Figure 11a) and also with a
traditional grid board method for DoY 69 (Figure 11b). Jang et al., 2006, describes the grid board method in
detail. The 3D scanning laser technology was the ILRIS-36D, developed in Canada by Optech.
Specifications are given in Table 8. Figure A-17 shows roughness profiles from both methods from DoY 69
and Figure A-18 shows the ILRIS scan on DoY 150.

Table 8. Specifications of the Optech ILRIS-36D.

Description Value
Range 3 — 1500 m (reflectivity 4 — 80%)
Wavelength 1535 nm
Pulse width <10 ns
Pulse energy <10 pm
Minimum sample separation 0.00115°
Scanning speed 2,000 points/s
Accuracy 4 mm
Point spacing 1 cm
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Figure 11. a) Laser scanner and b) grid board for soil roughness measurements.

6. VEGETATION SAMPLING

Vegetation properties such as stand density, row spacing, height, biomass, and LAI were measured weekly
during the field experiment. The crop density derived from the stand density and row spacing was measured
at the first two sampling since the corn seeds were planted in the fixed spacing and the germination rate is
over 70% throughout the field. The specific weekly measurements include height, biomass, and LAI. In the
whole season, the vegetation samplings were conducted on four spatially distributed sampling locations
(Figure 3). It was designed to characterize the spatial variability of the vegetation properties in the study site.

6.1 Height and Width

Crop height and width were measured by placing a measuring stick at the soil surface to average height of
the crop. Four representative plants were selected to obtain heights inside each vegetation sampling area.
Crop height for each of the sampling areas is shown in Figure A-19.

6.2 LAI

LAI was measured with a Li-Cor LAI-2000 in the inter-row region with 4 cross-row measurements. The
LAI-2000 was set to average 2 locations into a single value for each vegetation sampling area so one
observation was taken above the canopy and 4 beneath the canopy; in the row, % of the way across the row,
Y5 of the way across the row, and % of the way across the row. This gave a spatial average for row crops of
partial cover. LAI for each of the sampling areas is shown in Figure A-20.

6.3 Green and Dry Biomass

Each biomass sampling included one row. The sampling length was measured the same as length during
stand density measurement. The sample started in-between two plants and ended at the next midpoint that is
also greater than or equal to one meter away from the starting point. The plants within this length were cut
at the base, separated into leaves, stems, and ears, and weighed immediately. The samples were dried in the
oven at 70°C for 48 hours and their dry weights were measured, separating the ears into husks, shucks, and
kernel/cobs. Figure A-21 shows the Green and Dry biomass observed during MicroWEX-5. Dry biomass at
harvest is used as yield.

6.4 Vertical Distribution of Moisture in the Canopy
Details of the methods and measurements can be found in Casanova et al. 2006.
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7. WELL SAMPLING

7.1 Groundwater sampling

The groundwater sampling was conducted by Dr. Michael Dukes and his research team. The sampling was
conducted at all four wells in the field at the end of each month from March to June in 2006. The
groundwater sampling included groundwater level measurement by water level sounder, and collecting
groundwater samples for the analysis of N,. Figure A-22 shows the observations of N, during MicroWEX-5.

7.2 Water level measurement

The water level measurement was processed by the Levelogger from Solinst Canada Ltd.. The Leveloggers
were installed at each well and set to automatically record the water level every 15 minutes. The data were
downloaded onto a laptop during the well sampling at the end of each month. Figure A-23 shows the water
table elevation and depth during MicroWEX-5. The data from the Southeast Levelogger were severely
corrupted due to a problem in the communication hardware, and could not be included.

8. FIELD LOG
Note: Time is in Eastern Standard Time.

March 9 (DoY 68)

08:15 | Planting began; finished by the end of the day
08:40 | Planting in L-band footprint done
09:41 | Planting in C-band footprint done

C-band cal/antenna voltages tracking each other; antenna/cal
switch replaced

March 10 (DoY 69)

Northwest station sensors installed (CNR, TIR, HMP45C, soil
thermistors, TDRSs)

CNR was temporarily without anti-dew heating, also not level
Soil roughness measurement with LIDAR and grid-board

March 11 (DoY 70)

13:00 | C-band radiometer calibration
14:00 | L-band radiometer calibration

March 13 (DoY 72)

Setup eddy covariance, East, and Southwest stations

Replaced 2 Northwest thermistors: 2 cm near L-band footprint
and 8 cm

Installed canopy thermistors (0, 5, 10, 15, 20, 25 cm)
Northwest data collection begins

March 14 (DoY 73)

Leveled CNR

Installed East and Southwest stations; data collection begins
Installed eddy covariance soil heat flux plate

09:30 | L-band angle incorrect due to press-fit slippage on angle-iron
rotator; stopped data collection and brought it down
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March 15 (DoY 74)

10:00 | L-band rotator welded into correct position; brought up the
radiometer and restarted

Marked areas for vegetation sampling

Less than 50% emergence

March 16 (DoY 75)

13:00 | C-band radiometer calibration

14:00 | L-band radiometer calibration

March 17 (DoY 76)

08:00 | Herbicide sprayed; radiometers brought down

09:00 | Radiometers brought up

March 18 (DoY 77)

Found East station fallen to the ground; data unaffected

Installed soil water potential sensors in Northwest at depth of
32cm

Hand planted areas around sensors and wells

March 19 (DoY 78)

09:00 | C-band radiometer calibration

10:00 | L-band radiometer calibration

March 20 (DoY 79)

‘ 10:00 ‘ Repaired East station tripod

March 21 (DoY 80)

09:30 | Brought down L-band and removed mylar cover to avoid dew

10:00 | L-band back up

March 22 (DoY 81)

09:00 | Vegetation sampling (#1)

10:45 | L-band set too low by one rung (~15”) after mylar removal,
moved up one rung; data unaffected.

Soil water potential sensors connected to Northwest datalogger

March 24 (DoY 83)

1:00 C-band radiometer calibration and changed desiccants

2:00 L-band radiometer calibration and changed desiccants

March 31 (DoY 90)

11:00 | C-band radiometer calibration

12:00 | L-band radiometer calibration
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April 5 (DoY 95)

10:30

Vegetation sampling (#2)

East station found to be tilted; data unaffected

April 7 (DoY 97)

10:00

C-band radiometer calibration

11:00

L-band radiometer calibration

12:00

Canopy thermistors’ height changed (0, 5, 10, 15, 30, 40 cm)

April 10 (DoY 100)

| 09:00

‘ Vertical distribution of moisture sampling (#1)

April 12 (DoY 102)

14:30

Vegetation sampling (#3)

16:00

Canopy thermistors’ height changed (0, 5, 20, 35, 45, 55 cm)

April 14 (DoY 104)

12:00

Changed desiccants

12:30

C-band radiometer calibration

13:00

L-band radiometer calibration

April 17 (DoY 107)

| 10:30

‘ Repaired Styrofoam shield on L-band; data unaffected

April 19 (DoY 109)

10:00

CSAT height changed from 1.8m to 2.71m

11:30

Canopy thermistors’ height changed (0, 15, 30, 45, 60, 75 cm)

Gap in Southwest station memory began, from DoY 109 - 121

12:30

Vegetation sampling (#4)

April 21 (DoY 111)

09:30

C-band radiometer calibration

10:30

L-band radiometer calibration

April 24 (DoY 114)

09:30

Clean KH20 windows; DoY 109.5 to DoY 114.42 data bad

09:45

Canopy thermistors’ height changed (0, 40, 60, 80, 100, 120
cm)

April 25 (DoY 115)

2 c¢m thermistor added to East station

& cm thermistor added to Southwest station

April 26 (DoY 116)

09:30

Vegetation sampling (#5)

2 cm thermistor added to East station buried; data collection
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started; failed later today. All data collected should be
ignored.

8 cm thermistor added to Southwest station buried; data
collection started

Tassel formation beginning

May 1 (DoY 121)

May 3 (DoY 123)

May 5 (DoY 125)

May 10 (DoY 130)

May 12 (DoY 132)

May 15 (DoY 135)

10:30 | Changed desiccants

11:00 | C-band radiometer calibration

11:30 | L-band radiometer calibration

11:30 | Canopy thermistors’ height changed (0, 40, 85, 110, 135, 160
cm)

09:00 | Vertical distribution of moisture sampling (#2)
Tassel formation for greater than 75% of the field
Ear formation for roughly 75% of the field

09:30 | Vegetation sampling (#6)
Tassel formation for 100% of the field
Silking for some of the field
Silking for between 50 and 75% of the field

11:00 | C-band radiometer calibration

11:30 | L-band radiometer calibration

11:30 | Canopy thermistors’ height changed (0, 40, 75, 110, 145, 180
cm)

10:00 | Vegetation sampling (#7)
Silking for greater than 75% of the field
Vegetation samples (#7) found burned in oven

10:30 | Changed desiccants

11:00 | C-band radiometer calibration

11:30 | L-band radiometer calibration

10:30 | Cleaned KH20 windows

12:00 | Vertical distribution of moisture sampling (#3)
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May 18 (DoY 138)
‘ 12:00 ‘ Vegetation sampling (NW and NE only) (#8)

May 19 (DoY 139)

09:00 | C-band radiometer calibration
09:30 | L-band radiometer calibration

May 20 (DoY 140)
‘ 12:30 ‘ Ears removed from L- and C- band radiometer footprints ‘

May 24 (DoY 144)
‘ 09:00 ‘ Leaves removed from L- and C- band radiometer footprints ‘

May 25 (DoY 145)
‘ 10:00 ‘ Vegetation sampling (#9) ‘
May 26 (DoY 146)

09:00 | C-band radiometer calibration
09:30 | L-band radiometer calibration
East, Southwest, and eddy covariance stations removed

May 30 (DoY 150)

Soil roughness measurement of footprints with LIDAR

Final sensor removal

June 5 (DoY 156)

12:00 | Changed desiccants
12:00 | C-band radiometer calibration
12:30 | L-band radiometer calibration
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Latent Heat Flux

Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.

] I I
.
DT TR
T P T
e Bmes, g, ™R
e g, @ 88 A
O LY A 5
A W e e, _F MR
el
P T
- - - & t-'.
*a
..
s ®aate ®
. e say
o
- * o
cae TR
“n "®mas . . -
P T . oo
. - - - .
.
= .
.
.ar
.
: .o
- - - .- . -—-:l-
-
. . g
| 1 | 1 1 1 1
(= o o [= o o o o [=
o o o =1 o o =] =1
@© o 2 @ ol = - &
(Gw/m) xni4

140

130

120

110

100

90

80

70

Sensible Heat Flux

we

qewessifle o
.
PR T ]

. emen .

tos

-, t, Y

-t
. anBds

3
'
.
-~
.
.
o
-
.

.
.

LR P

' I.':‘* sy ve

5
]
1
¥

i

:
g .
W oy

600

500 —

400 —

300 —

Figure A- 2 Latent and sensible heat fluxes

|
=]
=]
&

100 —
0 —
-100 —

(auuM) xnj4

-200

90 100 110 120 130 140
DoY 2006 (EST)

80

70



(1s3) 9002 AeQ
ort 0l 0zt 04l 001 06 08 0L
T T T I T I _ 0

=i — 001

— — 002

mgzz;ii e .}?L%iéﬁ ks gy 1o,

— 005
— — 009
= — 004

— — 008

— Buyemdn — Bujjemumoq — — 006
— — 000}

Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.

| | | | 0oLl
uonelpey anembuoT

ovl 0l ot Ok 00t 06 08 0L

| | _

1 I R —{ooz

H — 008
1 — 00%

— 005

— 009

— 004

H — 008

8 — 006

18 — 0001

| 1 | | | 0oLl

uoneIpey SABMUOYS

L, XN
(3 /M) Xnjd

Figure A- 3 Down- and up- welling short- and long- wave radiation
25



Footprint Raingauges

Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.

I 1 I 1 |
12 o
— 9= — =
— —
a—
@
o
w
=
—_——la (=
— —_——-—a o, — o
— —
-
0
2
o — (=]
. — & — w
L @ o
e —| w
T 0w
_ S
3
e f=
- — - 2 - -
— = —
]
—— o
@
o
k=1
w
=]
2
o L
(=] f=1
- — © — o
i~ —
— = - o
=] @
b - 2 = =]
w0 —_— OO
—_—
I | L | 1 | | | o L 1 1 1 | | | 1 1 o
o @ W =w o O o = o O L= - " I = R - + B U= - A AT A = ]
N e e = = S =

(wuw) uonebnia pue ‘uonebiu| ‘uonendinald

Figure A- 4 Precipitation
26

DoY 2006 (EST)



Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.

|
140
|

|
130
]

|

|
120

|

|
110
|

|

|
100

|

100

0

0

0
30—
20—
10—

0

330
320 —
310+
300 —
200 —

(%) HY {y) aimpesedwa | 1y

Figure A- 5 RH, air temperature.
27

280 —

270

90 100 110 120 130 140
DoY 2006 (EST)

80

70



Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.

|
|
130
|

|
100
T

100

| ——
= =
[-+]
——
—
| | | | 1<) | | | | | | |

= ] o - [=] o o =] o o o o

) =] =1 o =] n

@ @ o ol — —

{s/w) paadg puim
(seaiBaq) uonoan( puip

Figure A- 6 Wind speed and direction
28

80 90 110 120 130 140
DoY 2006 (EST)

70



Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.
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Figure A- 7 Canopy air temperature, 0.0-0.3 m
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Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.

Figure A- 8 Canopy air temperature, 0.35-0.8 m
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Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.
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Figure A- 9 Canopy air temperature, 0.85-1.8 m
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Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.
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Figure A- 10 Northwest station soil temperature

32



Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.
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Figure A- 11 Southwest station soil temperature
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Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.
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Northwest Station Soil Moisture

Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.

Figure A- 13 Northwest station soil moisture
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Southwest Station Soil Moisture

Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.

Figure A- 14 Southwest station soil moisture
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East Station Soil Moisture

Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.
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Figure A- 15 East station soil moisture
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Soil Heat Flux

Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.
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Figure A- 16 Northwest, East, and Southwest station soil heat fluxes
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Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.
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Figure A- 17 Soil roughness profiles, DoY 69
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Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.

LIDAR Grid Extracted Profiles Parallel to the X Axis
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Figure A- 18 Soil roughness profiles, DoY 150
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Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.
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Figure A- 19 Canopy height
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NE LAI

Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.

140

Do 2006
SW LAI

90

251

051
0

1 1

140

120

110
DoY 2006
SE LA

80

i

1
w0
o -~

(auuzw) v

05F

Figure A- 20 Canopy LAI
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NW Canopy Biomass

NE Canopy Biomass

Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.
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Figure A- 21 Green and Dry canopy biomass
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Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.
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Figure A- 22 Nitrogen sampling
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Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.
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Figure A- 23 Water table depth and elevation above sea level
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