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· ,- . The first law of thermodynamics establishes 
the existence of the internal energy E, a state 
function, for a closed system. Assume that E ex­
ists and is a state function for open systems also. 
Define q to be the heat transferred to the system 
due to a temperature gradient, and w to be the 
work done by the system in addition to that re­
quired to introduce or remove material at the 
boundary. Neglecting kinetic and potential energy 
changes, the first law for an open system becomes 

s 
dE = 8q-8w + I Hk<e) dnk<•>, (1) 

k=l 
where 8 is a variation operator used to indicate 
that q and w are not state variables, but are path-
dependent functions instead, and where Hk<•> is the 
partial molal enthalpy of species k ( of s species 
present) entering or leaving the system, and in­
cludes the work required to transfer material 
across the boundary. If the only work done by the 
system is expansion work, it follows that 

8w + 8Dv = PdV, (2) 

where 8Dv is the differential of viscous dissipation 
of energy. Here dDv/dt, i.e. the time derivative, is 
the same quantity as denoted by Ev by Bird et al. 
[1]. 

For an open system, the second law of thermo­
dynamics may be written 

TdS = 8q + TdS 5;> + TdS <•> 
1rr ' 

(3) 
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where dS !i> and dS <•> are internal and external 
contributi~;s to the differential change in the en­
tropy of the system, due to irreversible chemical 
reaction and viscous dissipation, and to material 
entering or leaving under different conditions than 
in the system. Assuming that a state function S, 
established for closed systems, also exists for open 
systems, dS is a perfect differential. The internal 
entropy generation term dS fil must be positive. 

In an open system, the differential extent dg 
of a single chemical reaction is defined by 

(4) 

where dnk is the differential change in the number 
of moles of species k crossing the boundary of the 
system. Write 

Tds \il = Adg + 8Dv 
irr 

(5) 

where A is called the affinity of the reaction. In 
the absence of viscous dissipation, eq. (5) is es­
sentially a defining relationship for the affinity 
A. 

Define chemical equilibrium by the vanishing 
of the chemical reaction part of dS\il, independent 
of the existence of irreversibilitietintroduced by 
viscous dissipation or by material entering or 
leaving the system. Then 

Adg=O [eq], (6) 

where [eq] indicates constraint to paths of chem­
ical equilibrium. Since the variation dg is arbi­
trary, the necessary and sufficient condition for 
chemical equilibrium becomes 

[eq], (7) 

which means that the driving force for the re­
action is zero. If A -=I= 0 even though no reaction 
occurs (dg = 0), the system is not at stable equi­
librium. For example, a mixture of hydrogen and 
oxygen at room temperature does not react at any 
measurable rate, but may be made to do so by 
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introducing a spark or a suitable catalyst, such 
as spongy platinum. The spontaneous reaction is 
highly irreversible, showing that dsin , is positive 
or, from Eq. (5), that A =I= 0. The un'~~active mix­
ture is not at true chemical equilibrium, but its 
state has been termed "false equilibrium" [2] or 
"metastable equilibrium" [3]. 

Substituting Eqs. (1), (2), (3), and (5) into 
the differential of Gibbs energy, 

dG = dE + PdV + VdP -TdS- SdT, (8) 

we obtain 

s 
dG = - SdT + VdP - Ad(+ I Hk(e) dnk (e) 

k=l · 

- TdS<•) , (9) 

which may be considered as a form of Gibbs' equa­
tion for open systems in the absence of external 
force fields [2]. Since ds <•l depends on material 
crossing the boundary, and vanishes for dnk <•> = 0 
(k = 1, 2, ... , s), we have immediately 

A =- ( - ~~- )T P n<•> 
' ' ' 

(10) 

where the subscript n <•> indicates that the differ­
entiation is performed under the constraint of no 
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A general condition of chemical equilibrium for 

open systems is derived .. . with the condition of 
chemical equilibrium defined in Eq. 6, a restriction 

to constant temperature and pressure is unnecessary. 

material crossing the boundary. Hence the affinity 
of a chemical reaction in an open system is the 
same as that in a closed system. Considering the 
Gibbs energy G to be a function of temperature, 
pressure, and the numbers of moles of all species 
present, Eq. (10) becomes 

A-_ i (-o_Q_) (-0!1~) 
- k=l 0 11k T,P,n1 at T,P,n<•) 

s 

I llkJl,k 

k=l 

. (11) 

with the use of Eq. ( 4). The chemical potential µ.1< 

of species k is defined by 

Jl,k = ( -:~ ) T,P,n/ 
(12) 

where the subscript n1 means that the number of 
moles of each species except species k is held con­
stant. Invoking the principle of microscopic re­
versibility (Tolman) [4], each reaction in a mul­
tiple-reaction system at chemical equilibrium must 
be independently in equilibrium. Therefore, from 
Eqs. (7) and (11), it follows that 

s 

I 111kJLk = 0 (i = 1, 2, .. . , r) [eq], (13) 
k=l 

which is the condition of chemical equilibrium, 
valid for open systems. 

Using a different derivation, a number of 
authors, including Hougen [5], Lewis and Randall, 
[6], Moore [7], Van Ness [8], Aris [9], Waser 
[10], and Luder [11], imply that Eq. (13), or its 
equivalent, holds as the condition for chemical 
equilibrium only at constant temperature and 
pressure, and fail to indicate its generality. From 
the above development, with the condition of 
chemical equilibrium defined by Eq. (6), a restric­
tion to constant temperature and pressure or to 
any other set of constraints is unnecessary. Since 
the chemical potentials are intensive variables, 
they possess a value at every point in a system; 
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hence, chemical equilibrium exists at any point fo r 
which Eq. (13) holds. In fact, Eq. (13) is valid as 
the condition of chemical equilibrium for arbi­
trary thermal and mechanical variations in an 
open system. 

Further information can now be obtained re­
garding the nature of dS <•l, the contribution to dS 
ctue to material crossing the boundary. The usual 
form of Gibbs' equation for open systems (Pri­
gogine and Defay [2]) is 

s 

dG = - SdT + VdP + I µ.kdnk. (14) 
k=l 

Equating two expressions for dG, from Eqs. (9) 
and (14), we have 

s s 
I /Lkdnk = - Ad( + I Hk(e) dn / •) - TdS(•) . 

k=l k=l (15) 

Substitution from Eqs. (4) and (11) results in 

s 
TdS(•) = I [Hk(e) - /Lk]dnk(e) (16) 

k=l 

Now 

(17) 

and 

(18) 

where ,uk<•l and Sk<•l are the chemical potential and 
partial molal entropy, respectively, of species k 
crossing the boundary, and T <•l is the temperature 
of the material crossing the boundary. Hence, Eq. 
( 16) becomes 

s s 
TdS(•) = T I Skdnk(e) + I [H k(e) - Hk]dnk(e) 

k=l k=l 
(19) 

s s 
= T<•) I }3k(e) dnk(e) + I [µ. k(e) - /Lk]dnk(•) . 

k=l k=l 

Therefore dS <•l includes a term to account for the 
differences between either partial molal enthalpies 
or chemical potentials of the species crossing the 
boundary and those in the system, depending on 
whether the partial molal entropy terms are de­
scribed in terms of properties of the system or of 
properties of the material crossing the boundary. 
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N oinenclatwre 

A = Affinity of a chemical reaction 
Dv = Viscous dissipation of energy 
E = Total internal energy 
G = Total Gibbs energy, H - TS 
H = Total enthalpy 
nk = Number of moles of species k 
P = Pressure 
q = Heat transferred to the system due to a temperature 

gradient 
S = Total entropy 
s = Number of species in the system 
T = Absolute temperature 
V = Total volume 
w = Work done by the system 

Greek Symbols 

8 = Variation operator 
/Lk = Chemical potential of species k 
v1k = Stoichiometric coefficients of species k in reaction i 
g = Extent of chemical reaction 

Superscripts and Subscripts 

= Partial molal quantity 
(e) = Material crossing the boundary 
(i) = Material in the system 
i = Chemical reaction 
irr = Irreversible process 
k = Species of material 
n(•) = Differentiation performed under constraint of no ma­

terial crossing the boundary 
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