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H ands-on challenges that demonstrate and reinforce 
important concepts benefit the learning process­
this is especially true for the often abstract subject 

of process dynamics and control. Hands-on challenges can 
be motivating, can promote critical thinking, facilitate un­
derstanding in the use and limitations of the theory, and help 
prepare students for the challenges of the professional world. 

Too often the application of textbook theory is limited to 
solving questions listed at the end of the chapter. One typical 
question is to have the student expand or extend a math­
ematical development presented in the book. Another is to 
provide bits of data and challenge the student to select and 
employ a combination of formulas to obtain a desired result. 

Unfortunately, even when cleverly crafted, these textbook 
problems fall short of providing students with the depth or 
breadth of practice required for comprehension and mas­
tery .11 ·2l Thus, the Chemical Engineering Department at the 
University of Connecticut supplements the textbook with 
laboratory exercises. Hands-on laboratory exercises are ex­
tremely important to learning because they help students 
make the intellectual transition from theory to practiceY1 

The abstractions presented in textbooks are literally brought 
to life through the tactile nature of a lab experience. 

Unfortunately, the reality of the laboratory at the Univer­
sity of Connecticut is that each study can take many hours , 
and even days, to perform. Also, equipment failures and 
other problems teach the important lesson that the real world 
can be uncertain (this lesson is not usually intended to be 
the objective of a particular assignment, however). Thus, 
students rarely explore more than a very few central 
concepts in the lab. 

A training simulator offers an alluring method for provid-

ing students with the significant hands-on practice critical to 
learning process control. The proper tool can provide virtual 
experience much the way airplane and power-plant simula­
tors do in those fields . It can give students a broad range of 
focused engineering applications of theory in an efficient, 
safe, and economical fashion. And it can work as an instruc­
tional companion as it provides interactive challenges that 
track along with classroom lectures. 

Process control is a subject area well suited to exploit the 
benefits of a training simulator.C4l Modern control installa­
tions are computer based, so a video display is the natural 
window through which the subject is practiced. With color 
graphic animation and interactive challenges, a training simu­
lator can offer experiences that literally rival those of the real 
world.111 These experiences can be obtained risk free and at 
minimal cost, enabling students to feel comfortable explor­
ing nonstandard solutions at their desks. If properly de­
signed as a pedagogical tool with case studies organized to 
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present incremental challenges, we believe learning can be 
enormously enhanced for process control with such a train­
ing simulator. 

A CHEMICAL PERSPECTIVE 

Each discipline views process control from a different 
perspective. To help orient the reader, consider these "typi­
cal" examples drawn from chemical process control: 

Process Variables: temperature, pressure, pressure 
drop, level, flow, density, concentration 

Final Control Elements: solenoid, valve, variable speed 
pump or compressor, heater or cooler 

Control Algorithms: on/off, P/D, cascade, ratio, feed 
forward, multivariable decoupler, model predictive 

Process Applications: reactors, separators, distillation 
columns, heat exchangers, furnaces 

Many chemical engineering processes are literally one-of­
a-kind. Consequently, their associated control system will 
be unique in design and implementation. 

Additionally, chemical processes can be nonlinear and 
nonstationary, and can have long time constants, significant 
dead time, and/or noisy measurement signals. Disturbances 
occur from numerous sources, including loop interaction 
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Figure 1. Gravity-drained tanks graphic. 
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from other controllers in the plant. 

EXAMPLE LESSONS 

The following lessons have been drawn from the Control 
Station process control training simulator to illustrate the 
value such software provides the curriculum. We note that 
training simulators are distinguished here from tools such as 
Matlab,151 which have a primary function of design, analysis, 
and simulation. The reader can download a free control­
station demo at 

<www.engr.uconn.edu/control/> 

P-Only Controller Performance 

The computer graphic display for the gravity-drained tanks 
process, shown in Figure 1, is two vessels stacked one above 
the other. Liquid drains freely through a hole in the bottom 
of each tank. The controller output signal manipulates the 
flow rate of liquid entering the top tank. The measured 
process variable is liquid level in the lower tank. The distur­
bance variable is a secondary flow out of the lower tank 
from a positive displacement pump, so it is independent of 
liquid level except when the tank is empty. 

Students begin their studies with this process because its 
dynamic behavior is reasonably intuitive. If they increase 
the liquid flow rate into the top tank, the liquid levels rise in 
the tanks; if they decrease the flow rate, the levels fall. 

The traditional place to begin a course is with the study of 
process dynamics. Students generate a step-test plot and 
compute by hand the first-order-plus-dead-time (FOPDT) 
model parameters: steady-state process gain, KP, overall time 
constant, Tp, and apparent dead time, 0P. After they have 
gained mastery with hand calculations, they use tools that 
automate the model-fitting task so they can explore more 
practical tests. A Control Station fit of test data is shown in 
Figure 2 for the gravity-drained tanks. 

Students use their FOPDT model parameters in tuning 
correlations to compute a P-Only controller gain, Kc- Figure 
3 displays a Control Station strip chart showing set-point 
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... we do not believe a training simulator is better than, 
or a replacement for, real lab experiences. In fact, we believe that 
hands-on studies with actual equipment are fundamental to the learning process. 

tracking performance for the gravity-drained tanks under P­
Only control. The Kc for the controller is computed from the 
integral time-weighted absolute error (IT AE) correlation/6

·
71 

using the FOPDT model parameters from Figure 2. 

With this as a starting point, the students now turn to what­
if studies. The investigation of Figure 4 explores how Kc 
impacts offset and oscillatory behavior for set-point tracking 
under P-OnJy control. Students also explore disturbance re­
jection under P-Only control. Is the best tuning for set-point 
tracking the same as for disturbance rejection? And, how is 
"best" tuning defined? 

For this and all Control Station processes, the student can 
change the level of random noise in the measured process 
variable. They can also manipulate the controller output 
signal, set point, and disturbance variable using a step, oscil­
lating, ramp, or pseudo-random binary-sequence (PRBS) 
signaJ sequence. The current version of Control Station of-
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fers only one disturbance variable for each process, and this 
disturbance can be changed at will by the student. We note 
that this is not realistic in that a real plant can have many 
disturbances from a variety of sources that will affect the 
process, and as disturbances, they are generally not available 
for manipulation by the engineer. The students are made 
aware of this during class. 

PI Control and Nonlinear Behavior 

The computer graphic for the countercurrent, shell and 
tube, lube oil cooler (a kind of heat exchanger) is shown in 
Figure 5. The controller-output signal manipulates the flow 
rate of cooling liquid on the shell side. The measured pro­
cess variable is lube oil temperature exiting on the tube side. 

Students learn an important lesson about process dynam­
ics by studying the nonlinear character of this process as 
shown in Figure 6. The steady-state gain of the process 
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Figure 6. Heat exchanger displays nonlinear behavior. 
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clearly changes as operating level changes. Less obvious is that the 
time constant of the process also changes. 

For processes that have such a non linear character, the perfor­
mance of a controller will change as the process moves across 
operating levels. Figure 7 illustrates this point. The exchanger is 
under PI control, and as the set point is stepped to different 
operating levels , the nonlinear behavior of the process clearly 
impacts set-point tracking performance. Thus, students learn 
that a controller is designed for a specific or design level of 
operation . Best practice is to collect dynamic test data as near 

Figure 8. PI controller tuning impacts performance. 
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as practical to this design. 

Figure 6 also shows that the heat exchanger has a 
negative steady-state gain. Students learn that a com­
plete design includes specifying the action of the con­
troller (reverse vs. direct acti ng).c6-si They learn this 
concept because if they enter it wrong, the controller 
output will quickly drive the valve to either full open 
or full closed and it will remain there until the cor­
rect controller action is entered . 

For what-if studies, students explore how PI control­
ler tuning parameters interact and affect set-point track­
ing performance. Figure 8 shows a tuning map that 
they develop from an orderly tuning investigation 
using an ideal linear transfer function process avail ­
able in Control Station . 

PID Control and Measurement Noise 

Derivative action can decrease the process settling 
time because it resists rapid movement in the measured 
process variable.16l In Control Station, the PID control­
ler algorithm is currently implemented using the ideal 
(noninteracting) form 16·9J with a choice of derivative ac­
tion either on control ler error or process measure­
ment. Students learn how derivative action impacts 
controller performance with studies similar to that 
shown in Figure 9, which foc uses on the derivative 
time tuning parameter. 

The center plot of Figure 9 shows the set-point track­
ing performance of a PID controller tuned using the 
IT AE16•71 for set-point tracking correlation. For all plots 
in Figure 9, Kc and T 1 remain constant and the measure­
ment noise has been set to zero. The plot to the left in 
Figure 9 shows how the oscillating nature of the 
response increases as derivative action is cut in hal f. 
The plot to the right shows that when derivative 
action is too large, it inhibits rapid movement in the 
measure process variable, causing the rise time and 
settling time to lengthen. 

When noise is added to the measured process vari­
able, students learn that derivative action amplifies it 
and reflects it in the controller output signal. Figure 10 
shows this quite clearly with a side-by-side comparison 
of a PI and PID controller. For this comparison, the 
same amount of measurement noise was used through­
out the experiment. This study helps students visualize 
that a PI controller is not impacted by noise while the 
derivative action of the PID controller reflects and am­
plifies it in the controller output signal. 

Students also compare derivative on controller error 
to derivative on process measurement. Watching the 
derivative on error "kick" after a set-point step is a more 
memorable experience than simply hearing about it. 
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Figure 11. Jacketed reactor graphic. 

Cascade. Feed Forward. and Disturbance Reiection 

The jacketed reactor graphic, shown in Figure 11 , is a 
continuously stirred tank reactor in which an irreversible 
exothermic reaction occurs. Residence time is constant in 
this perfectly mixed reactor, so the steady-state conversion 
from the reactor can be directly inferred from the tempera­
ture of the reactor product stream. To control reactor tem­
perature, the vessel is enclosed with a jacket through which a 
coolant passes. 

The controller output manipulates the coolant flow rate 
through the jacket. The measured process variable is product 
exit-stream temperature. If the exit-stream temperature is 
too high, the controller increases the coolant jacket flow to 
cool down the reactor. The disturbance variable is the inlet 
temperature of coolant entering the cooling jacket. 

The jacketed reactor can be run in three configurations: 
feedback control , as shown in Figure 11, feed forward with 
feedback trim, and cascade control. When the cooling jacket 
inlet temperature changes, the ability to remove heat changes 
and the control system must compensate for this distur­
bance. Cascade and feed forward are control strategies used 
for improved disturbance rejection. 

Contro ller: PI.D with Feed Forward 
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Figure 12. Benefits of feed-forward control. 

Cascade design involves the tuning of two controllers. 
Feed forward requires identification of an appropriate pro­
cess and disturbance model. 

The rejection of a step change in the disturbance variable 
Uacket inlet temperature) for a single loop PI controller is 
compared in Figure 12 to a Pl with feed forward control­
ler. The benefit of feed forward is clear for this process 
because for the same disturbance, the measured process 
variable has a much smaller maximum deviation and a 
faster settling time. 

Students compare single-loop, feed-forward, and cascade 
control in a series of exercises. They investigate tuning 
issues, which PID modes to use in a cascade, the order and 
accuracy of the models needed for feed-forward design, 
plant-model mismatch, dead-time issues, and a host of other 
interesting challenges. 

Control Loop Interaction and Decoupling 

The graphic shown in Figure 13 is a binary distillation 
column based on the model of McCune and Gallier.r101 The 
column has two measured process variables and two ma­
nipulated variables. The reflux rate is used to control distil-
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Figure 14. Distillation column shows loop interaction . 

late purity and the steam rate is used to control purity of the 
bottoms stream. 

Students use this process to explore the interactions that 
can occur in such multicontroller applications. Control-loop 
interaction occurs because when the distillate purity out of 
the top of the column is too low, the top controller compen­
sates by increasing the flow of cold reflux into the column. 
This increased reflux flow will indeed cause an increase in 
the distillate purity. The additional cold reflux will work its 
way down the column trays, however, and eventually begin 
to cool the bottom of the column. This cooling causes the 
purity of the bottoms stream to move off set point and 
produce a controller error. 

The bottom controller compensates by increasing the flow 
of steam into the reboiler. This produces an increase in hot 
vapors traveling up the column, which eventually causes the 
top of the column to begin to heat up. The result is that 
distillate purity again becomes too low. In response, the top 
controller compensates by again increasing the flow of cold 
reflux into the column. 

This controller "fight" is shown on the left side of Figure 
14. The upper trace shows the distillate composition re­
sponding to a step set-point change. Controller interaction 
causes the set point response to be quite slow since both 
controllers are working at cross purposes. 

Decouplers are feed-forward elements where the mea­
sured disturbance is the controller output signal of another 
loop on the process. Two decouplers are required to com­
pensate for loop interaction, one for each controllerP 1 Like a 
feed-forward element, each decoupler requires identification 
of a process and disturbance model. The right side of Figure 
14 shows that with decouplers in place, this loop interaction 
is dramatically reduced. 

Students explore different controller modes , loop tunings, 
model structures, and many other design issues. With two 
controllers and four models for complete decoupling, stu­
dents also learn how important bookkeeping is to the 
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control designer. 

CONCLUSION 

Presented here are some examples of the lessons and chal­
lenges that a training simulator can provide. Space prohibits 
presentation of other studies available in Control Station, 
including the control of integrating processes, the use of the 
Smith predictor controller that is a simplest form of a model 
predictive controller, and a host of process identification 
methods and procedures. 

We stress that we do not believe a training simulator is 
better than or a replacement for real lab experiences. In fact, 
we believe that hands-on studies with actual equipment are 
fundamental to the learning process. 

We are of the opinion, however, that a training simulator 
like Control Station can provide students with a broad range 
of meaningful experiences in a safe and efficient fashion . 
These experiences can be obtained risk free and at minimal 
cost, enabling students to feel comfortable exploring non­
standard solutions at their desk. We believe if a training 
simulator is properly designed, it can bridge the gap between 
textbook and laboratory, enabling significantly enhanced 
learning for process control theory and practice. If the read­
ers would like to learn more, they are encouraged to contact 
Doug Cooper at 

cooper@engr.uconn.edu 

or visit 

<www.engr.uconn.edu/control> 
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