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S tudents in the undergraduate heat transfer class seem 
to become more excited about the subject when they 
begin solving realistic problems that somehow con

nect to their experience. While many of these problems can 
be solved using the approximations of one-dimensional sym
metry, a large body of interesting and relevant problems must 
be tackled with two-dimensional (2-D) methods. This paper 
describes a simple method for solving these problems using 
any of a number of spreadsheet programs, such as Microsoft 
Excel, Corel Quattro Pro, Lotus 1-2-3, etc. We have success
fully used this method in junior-level heat transfer at Louisi
ana Tech University for the past two years. 

TWO-DIMENSIONAL METHODS 

Various approaches are available for solving 2-D problems. 
Analytical solutions to engineering problems are highly de
sirable due to the elegant connection that becomes visible 
between physical and mathematical principles. For a few 
simple geometries, methods such as separation ofvariables11 1 

can be applied, or solutions to characteristic differential equa
tions may be available ,121 but they cover only a small fraction 
of the possible problems. 

Graphical methods13•41 have been used for many years to 
produce solutions for situations requiring qualitative or ap
proximate answers. Information about these methods is avail
able in several textbooks, but graphical techniques may be 
perceived as excessively approximate compared to the nu
merical methods that are so accessible today. Although no 
statistics to this effect are known, the sense is that the graphi
cal methods are seldom taught. 

The explosion of the information age has provided ready 
access for engineers and students to high-powered desktop 

The method can ... be extended by solving 
problems with time dependence (transient 
problems), problems with geometries that 

would benefit from rectangular rather 
than square elements, geometries with 

edges at oblique angles, and even 
three-dimensional problems. 

machines that are suited for numerical solutions to heat trans
port and other engineering problems. While commercial soft
ware such as AN SYS, PD Ease, FlexPDE, etc., can tackle two
and even three-dimensional problems, extremely useful 2-D 
solutions using the Finite Difference Method (FDM) can be 
easily obtained by students or engineers with an ordinary 
spreadsheet. Furthermore, the process of setting up the prob
lem, including formulating the boundary conditions, laying 
out the geometry statement, determining the convergence 
conditions, etc., reinforces the understanding of heat trans
fer principles by the student. Obtaining the solution by 
this process also promotes understanding of how com
mercial solvers work. 
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The value of convenient spreadsheet programs for solving 
a variety of chemical engineering problems has been previ
ously demonstrated in various sources.'5 1 While the descrip
tion here applies solely to heat transfer, a nearly identical 
approach can be used to solve problems of mass transfer, fluid 
flow, electric current flow, mechanical stress, etc., because 
of analogous mathematical descriptions. 

BASIS OF FINITE DIFFERENCE METHOD 

The FDM starts by talcing the system under study and di
viding it into a large (but "fi nite!") number of rectangular 
elements. Each element is assumed to be isothermal, i.e., the 
entire element exists at a single temperature. At the center of 
each element is a "node" or "mesh point" with a unique iden
tifier based on its position in the "nodal network" or "mesh." 
Integer subscripts (m,n) relate to position on an x-y axis sys
tem with a di screte value range. Figure 1 displays this setup. 

In order to solve for the temperatures in the system, we 
need temperature derivatives for insertion into the heat equa
tion. Consider the temperature T

111
_n of an arbitrary element 

(m,n) as shown in Figure I. The first derivatives (in x and y) 
are written by assuming linear variation of temperature be
tween node points. Since second derivatives are just first de
rivatives of first derivatives, 

t.x 

Tm,n -Tm-1,n 

~x Tm+l,n -2Tm,n +Tm-I n 

(~x)2 

T m,n+1 

T m-1 ,n Tm.n T m+ 1,n 

T m,n-1 

Figure 1. Mesh representing the body or 
system under study. T is the uniform 

temperaturem~f the 
shaded elemen t. 
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(I) 

Similarly, for the vertical direction 

;iTj 
ay2 m,n 

Tm,n+I -2 Tm,n +Tm,n- 1 

(~y)2 
(2) 

We know the three-dimensional heat equation that relates 
conductive fluxes and heat generation to the time rate of 
change of the temperature of a system as 

j__(kaT)+j__(kaT)+j__(kaT)+ · - C aT 
ax ax ay ay az az q -p pat (3) 

We can apply some simplifying assumptions that neverthe
less hardly reduce the usefulness of the equation by impos
ing steady-state conditions, no generation, and a thermal con
ductivity that is temperature independent. The result is 
LaPlace's equation, which, when we make the additional as
sumption of 2-D symmetry, i.e., Tis constant in z, is 

a2T a2T 
-+-=0 
ax 2 ay2 

(4) 

Inserting the second derivatives (Eqs. 1 and 2) into Eq. (4), 
talcing the case of a square mesh (i.e., t.x = t.y, assumed 
throughout the rest of this article), and doing some algebra to 
solve for T m,n' we get 

T Tm+l ,n +Tm-1,n +Tm,n+I +Tm,n- 1 
m~ 4 (5) 

In other words, the temperature of interest of a location within 
the "bulk" of the system, and not at a boundary, is just the 
average of the four temperatures surrounding it. 

SIMPLE EXAMPLE: 
CONSTANT BOUNDARY TEMPERATURE 

We can apply this result immediately to solve a real prob
lem. Consider a metal plate 0.9 m x 0.9 min size that has its 
edges held at constant temperatures, as shown in Figure 2. 
We ask, what is the temperature field that develops in the 

298K 

0.9m 

273K 

Figure 2. Metal plate 0.9 m x 0.9 m 
in size with edges held at constant 

temperatures. 
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plate once steady-state conditions are attained? 
We set up a simple spreadsheet, as shown in Fig
ure 3, with a cell representing the nodal tempera
ture of each 0.1 m X 0.1 m element in the plate. 
The nodes are at the center of each element, ex
cept at the boundaries. The boundary nodes sit at 
the edge of their elements, and the elements are 
half the size of the nodes in the center portion 
(note that the corner elements are one-fourth the 
size of the central elements). 

Metal Plate with Ed es at Constant Tam erature 

=(A9+BB+C9+B10)/4 

M M M M M M M m 
- - - ~~~~- M M M M M M m 
---i-=273~-t-'~-+-' ~m~_,_.~'ll=3'--1-m_-+-='ll~3-..._m~-+-~'ll=3~-m--i---; 

The spreadsheet is set up by first turning off 
any limitations on circular references . In Excel, 
this is done by going to Options and selecting 
the Calculation tab, then choosing manual cal
culation. The number of iterations and conver

Figure 3. Spreadsheet set up to solve for the temperature distribution 
of the plate in Figure 2 . The interior nodes consist of formulae (as 
shown for B9}, while the perimeter values are constants, as shown. 

gence criteria are also set there. These are important steps, as 
without them, Excel will return errors when copying the nodal 
equations, leading to untold frustration. 

Now the perimeter temperatures can be input as constants. 
Then the nodal equations are entered at the interior points. 
The equation for cell B9, for example, is 

=(A9+ B8+C9+Bl~/4 (6) 

Once typed into B8, the equation can then simply be copied 
and pasted to the rest of the interior cells. 

After setting up the equations, hitting F9 causes the spread
sheet to calculate a number of times set by the calculation 
limit or the convergence limit ("maximum change" as labeled 
in the Excel Calculation option) entered previously. Repeated 
presses of F9 guarantee that the solution converges before 
reaching the number of iterations limit. 

This problem converges almost immediately (in 80 itera
tions) using a maximum change criterion of0.001. Reducing 
the size of this convergence limit will result in a higher preci
sion solution at the cost of increased CPU time. The accu
racy of the solution depends on how closely the mesh ap
proximates the actual geometry. In general, accuracy improves 
as the node spacing decreases. Accuracy can be checked by 
halving the node spacing and recalculating a solution. The 
calculation has reached its highest accuracy if the two solu
tions are found to be essentially the same. If substantial dif
ference exists, the process of reducing node spacing and re
calculating is continued until the difference diminishes. 

The solution, shown in Figure 4, was also graphed using 
the surface plot option in Excel. The plot gives an excellent 
view of what is going on with the plate's temperature field. 
Higher spatial resolution could be obtained by setting a smaller 
increment size, resulting in a larger number of cells. Though 
execution time trades off with resolution, even highly resolved 
arrays iterate quickly with a current-model PC. Moreover, 
the linear nature of the equations being evaluated tends to 
prevent the occurrence of computational instabilities that 
sometimes appear with iterative methods. 
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DERIVING EQUATIONS FOR BOUNDARY 
CONDITIONS 

The above example is especially easy because of the con
stant boundary conditions (BCs). Changes in heat transfer 
mode (e.g., convection or radiation from a solid) or a change 
in material (transition to a region of different thermal con
ductivity) necessitate more complicated equations in the 
boundary cells. Several textbooks list these boundary condi
tions for various cases. I6•71 The ability to derive arbitrary BC 
equations,18•9I however, gives one the confidence to attack a 
variety of problems. 

The basic approach to deriving a BC equation is to per
form a heat balance on the boundary element of interest. Since 
we have assumed the absence of generation, this amounts to 

(7) 

where the g in are rates of heat transfer from adjoining cells. 

• 360-370 
• 315().:BJ 

0340-350 
• lll-340 
• 320-3:Jl 
• 310.320 -· 
0300-310 
0290-Dl 
• 29'.1-290 
• 270-2Bl 

Figure 4. Solution of slab problem after 80 iterations. 
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A surprising array of complicated problems can be solved using this 
method that cannot be directly solved with analytical methods. 

This can be illustrated by example. Consider convection above 
a horizontal surface, as illustrated in Figure 5. Based on the 
figure and Eq. (7), 

(8) 

Some students may see a comfortable analogy between this 
equation and Kirchoff's current law in electric circuits, i.e., 
the currents entering a circuit node must sum to zero. Now, 
using Fourier's Law for the conduction rates, 

dT 6T 
qi =-kA-a=-kA-

dx 6x 
(9) 

and the standard expression for the convection transport rate 

(10) 

we have 

For this equation, we have assumed an arbitrary depth of 
the system of 1 m. In the 2-D symmetry that we have adopted, 
all properties of the system, including its structure and tem
perature, are constant with depth (i.e. , the z direction) . The 
arbitrary choice of 1 m simplifies the arithmetic and permits 
calculated secondary quantities to be considered on a per
meter-of-depth basis. The flux "faces" at the left and right 
ends of the cell are only a half-width tall since the element 
sits at an edge. The Fourier Law terms are cast to have a 
positive sign by listing the T terms in the order of exterior 
temperature minus interior temperature with respect to the 
element being analyzed. 

After canceling and solving for the node temperature, we 
get 
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T m-1 .n 
q T~ 

c. T m,n Tm+1,n 

~ ~ 
q2 

T m,n-1 

Figure 5. Schematic for deriving 
boundary equation for the case of 

convection above a horizontal 
surface. 

1 ( 2h ) Tm,n ( h ) Tm+l,n +2Tm,n-l +Tm- 1,n +k6xT~ (12) 
2 2+- 6x 

k 

This equation is inserted into the corresponding spreadsheet 
cell. References to the convective heat transfer coefficient 
(h), thermal conductivity (k), element width (!1x), and fluid 
temperature (TJ can be made by giving these variables names, 
making it easier to transcribe and debug equations. 

GENERATION EFFECTS 

The effects of heat generation may be included by adding a 
term to the heat balance of an element. This applies to bal
ances done on both edge cells and interior cells. Consider 
first the edge cell with convection from its top surface that 
we analyzed above. With the generation term, Eq. (7) be
comes 

(13) 

where q is the volumetric rate of heat generation (W/m3) 

that is considered to be uniform within the element. The vol
ume of the element is given by V. Now Eq. (13) becomes 

qi +q 2 +q3 +q c +q(6x{ 
6
; )1m) =O (14) 

After making the substitutions we made above and applying 
some algebra, the nodal temperature is found to be 

I [ 2h . (6x)
2

] 

2 2+ - 6x k k 
~(--h-~) Tm+l,n +2Tm,n-l +Tm- 1,n +-6xT~ +q--

k 

(I 5) 

Similarly, applying this approach to an interior element yields 
an equation analogous to Eq. (5) 

. (6x}2 
Tm+l,n +Tm- 1,n +Tm,n+I +Tm,n-1 +q- k-

4 
(16) 

By assigning different generation rates to different areas 
within the system, problems involving non-uniform genera
tion can be attacked. Problems of this type are in general very 
difficult to solve. Because of its relative simplicity, this method 
can help one set up and solve many situations involving non
uniform generation and thereby build intuition about this class 
of problem. 
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CALCULATING THE HEAT TRANSFER RATE 
FROM THE TEMPERATURE FIELD 

Fourier's law written for 2-D permits the determination of 
the heat rate at an arbitrary point given knowledge of the 
spatial temperature distribution. The heat rate can be treated 
as a vector quantity and solved at an arbitrary direction by 
this means, but for the purposes of junior-level heat transfer, 
it is sufficient to determine fluxes that are parallel to the x
and y-axes. 

Figure 6 shows an interior element where conduction is 
occurring. We know the heat transfer rate from element A to 
element B from Fourier 's law by 

~T TA -Ts 
q A• B "'-kA-=kfuc(lm),~-~ 

~x ~x 
(17) 

By now applying this formula along a vertical or horizontal 
length of several elements, and adding up the heat rate con
tributions of all these elements, we can calculate the total 
rate across any plane in the system. Not only is thi s capabil
ity useful for determining heat transfer rates for specific cases, 
but it also permits one to check the self-consistency of any 
solution by making sure that the heat balance around any 
boundary is correct. 

The perimeter heat fluxes of the metal slab above were cal
culated as shown in the spreadsheet of Figure 7. Here the 
heat rates from each side of the body have been determined 
by first calculating the rates on a cell-by-cell basis and then 
adding them up. As we see from the figure, the heat rates 
from all the sides, when summed, add to zero-as they should 
for a body in steady-state without generation. 

EXAMPLE: 
HEATING DUCTS IN THE FLOOR 

We further illustrate the method by solving a more practi
cal, real-life problem taken from our heat transfer course. The 
problem shows the utility of this method, as solutions by other 
routes would only come with much difficulty. The problem 
is stated this way: 

A large, horizontal fiberglass slab serving as a 
floor is heated by hot air passing through ducts 
buried in it, as shown in the cross-section in Figure 
8, where S = 160 mm. The square ducts are centered 
in the fiberglass, which is exposed to the ambient 
above and insulating earth below. For the case with 
the top su,face and duct su,faces at 25 and 85 °C, 
respectively, calculate the heat rate from each duct, 
per unit length of duct. The thermal conductivity of 
the fiberglass is 2.5 Wl(mK). 

The spreadsheet solution to this problem is shown in Fig
ure 9, with key equations spelled out for clarity. An area in 
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the upper left allows input parameters (whose cells are named 
as variables) to be changed so that the problem can be solved 
for a variety of cases. The solution exploits the inherent sym
metry of the problem by solving only a segment of the sys
tem, yielding the heat rate for a half-duct, which is then 
doubled to arrive at an answer. 

A detai l of the spreadsheet shown is the labeling of the 

T, 

Figure 6. Heat transfer rate from an 
internal element A in to another 

internal element B. 

Figure 7. Determination of heat rates from all sides of the 
m etal slab pictured in Figure 2 . The sum of the rates 

equals zero, verifying the solution of the 
temperature distribution . 

Air Fiberglass 

Figure 8. Fiberglass slab with embedded ducts for 
heating by air flow. The top surface of the slab is 

a room floor, while the bottom surface 
lies against insulating earth. 

Chemical Engineering Education 



B C D E G H K L N 

=(G12+F1 1 +E12+F13)/4 

0 + OJ!QQ___,_ - 25 25 ~ 25 1 25 25 25 
_1 t 0.020 36.2941 [ 36.7328 38_1_ 1 40.9816 I 45.782.!_ 52529~ 54.3348 

25 ~ 
54.8099 54.9050 

----1 

Figure 9. 

Solution 
to 
fiberglass 
slab 
problem. 
The 

2 o.04o 46.1101 t 47.4689 49.9 2 54.9760 64.6176 I 85 85 
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85 85 
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rate 
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duct a --j _ 1 1 2 3 4 5 6 7 _J__B _ __, 

I 
qtop total is 

q~op 

~ uct 
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/ - 844 W 

+ 

------+-- ---
-+ T 

----j-
I -

+ i=k'(FB-F7) I 
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I 

r 

l 
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50.9559 
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- +-=-- -- r-- r-:_:;:k;;;*0"'15-=-;H::;;1,:;5);--il-l-l --~•5.7178 
. 4.5721----
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+--

£ T 

nodal rows and columns and their locations in vertical and 
horizontal directions. These labels help one to keep track of 
the geometry of the problem. 

The lower portion of the sheet (row 24 down) shows the 
calculation of heat rates at nodes along the floor or top sur
face ("qtop") and along the duct perimeter ("qduct"). The 
close agreement of these heat rates serves as a check on the 
answer and reinforces the notion that input and output rates 
must be equal in a steady-state problem. 

CONCLUSION 

We have described here a computer-aided, finite-difference 
approach to solving 2-D heat transfer problems in the under
graduate curriculum. A surprising array of complicated prob
lems can be solved using this method that cannot be directly 
solved with analytical methods. Once learned, the method is 
applicable to a number of other course situations. For ex
ample, our students in unit operations laboratory have solved 
for heat transfer characteristics of critical but odd-shaped 
components in heat transfer equipment under study. The 
method can also be extended by solving problems with time 
dependence (transient problems), problems with geometries 
that would benefit from rectangular rather than square ele
ments, geometries with edges at oblique angles, and even 
three-dimensional problems. 
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4.lll30- - qdiJct_tot 
1.8394 0.871 0.473 I 0.073 422.236 

Q for one duct is 2 • 422.2362 or 844.4723 W 
per meter of duct lengtti:- - -
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