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The object of this column is to enhance our readers ' collections of interesting and novel prob­
lems in chemical engineering. Problems of the type that can be used to motivate the student by 
presenting a particular principle in class, or in a new light, or that can be assigned as a novel home 
problem, are requested, as well as those that are more traditional in nature and that elucidate 
difficult concepts. Manuscripts should not exceed ten double-spaced pages if possible and should 
be accompanied by the originals of any figures or photographs. Please submit them to Professor 
James 0 . Wilkes (e-mail: wilkes@engin.umich.edu), Chemical Engineering Department, Uni­
versity of Michigan, Ann Arbor, MI 48109-2136. 
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The evaluation of phase equilibria from equations of 
state (EOS) is a classical problem traditionally taught 
in thermodynamics courses as part of the chemical 

engineering curriculum, both at the undergraduate and gradu­
ate levels . It can appear within a thermodynamics class or as 
a practical example in a numerical methods course. 

The solution methodology normally taught (of the several 
availableL'1) for extracting coexistence information from an 
EOS is based on solving for unknown variables in the EOS, 
subject to the constraints of equilibrium. The technique is 
implemented through an iterative procedure12·3l or by using a 
multidimensional root-finding algorithm. 

In this work, we introduce a novel method to solve this 
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problem by writing a differential form for the equilibrium 
conditions that requires the numerical integration of these 
coupled differential equations to trace out the coexistence 
curve. For a simple example problem, we show that this 
method produces reasonable results around thirty times faster 
when compared to a root-finding algorithm . We also re­
visit a combined algorithm, discussed by both Asselineau , 
et al., 151 and Michelsen,l61 that uses the best features of 
both approaches . 

PROBLEM STATEMENT 

Determine the coexistence curve for propane from T = 200K 
to the predicted critical point. Use the Redlich-Kwong equa­
tion of state_l71 

SOLUTION METHODOLOGY 

Direct Method 

The direct method involves writing the three equilibrium 
conditions,l81 namely 

T1(P1,p1
) = T"(P",p") 

P1(T1,p1
) = P"(T", p") 

µ1(T1,p1
) = µ"(T", p") 

(1) 

(2) 

(3) 
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where Tis the temperature, Pis the pressure, p is the density, 
and µ is the chemical potential, while the superscript " l" re­
fers to liquid and "v" refers to vapor. 

According to the Gibbs phase rule141 for this one-compo­
nent, two-phase system, one independent intensive variable 
must be fixed in order to establish the intensive state of the 
system. Since the Redlich-Kwong equation of state is explicit 
in pressure, we fix the temperature (i. e., T1 = T") as per the 
problem statement. From these specifications we are left with 
two coupled, nonlinear equations (Eqs. 2 and 3 above) and 
two unknowns ( p1 and pv). Here, a nonlinear root-finding 
algorithm (Newton-Raphson191 with a forward-difference Ja­
cobian) is used to solve (root tolerance = 10-s for conver­
gence) for the two unknowns at the system specifications 
(fixed temperature). To reach the critical point, steps in the 
temperature are taken starting from 200K. There is a finite­
sized temperature step, however, that one can take using this 
solution methodology, above which this method will not con­
verge. For example, given the converged solution (liquid and 
vapor density) at 200K, if we step to 200.03K (i.e., a step 
size of0.03K) and use the converged solution at 200K as the 
guess into the Newton-Raphson routine for 200.03K, the 
method will fail (a converged solution will not be reached) . 
But if we use a smaller step size (say, 0.02K) , the routine 
runs without problem up to the critical point. For a step 
size of 0.02K, this method took about 1.5 seconds to run 
on a Dell Dimension (600 MHz, 256Kb RAM, DIGITAL 
Visual FORTRAN). 

Integrate Mehod 

Although the problem specification is for a two-phase, one­
component mixture, we will introduce the integrate method 
for a two-phase, n-component mixture (keeping in mind that 
what follows is applicable for three-phase or higher equilib­
rium). We do this to show the compactness of the resulting 
expressions for a mixture, although the problem we are work­
ing through is for a pure component (propane). 

We can write the chemical potential and pressure for each 
component as 

I I ( I I I ) µi =µi T ,P1 ,·· ·•Pn (4) 

I I ( I I l ) P =P T ,P1 ,· ··,Pn (5) 

V "(TV V V) µi =µi ,P1 ,·· ·,Pn (6) 

pv =Pv(Tv ,P1 , .. . ,p~) (7) 

where Pi indicates a component density of species i, while 
the differentials are 
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ctµ ' =[~ J ctT' + ~[aµ( J ctp' ' aT' £.., a ' J p1 J=I p J T 1 ,Pt (katj) 
(8) 

dP1 =(ap' J dT1 + ±(aP' J dp1 (9) 
aT' ' i=I ap( T' '(· .l ' p ,P, J>'l 

dµ v =(clµ :' J dTV + ±[aµi l dpv (10) 
I clTV . apv J p' J=l J Tv,p~(katj) 

dPv=(apvJ dTv+±(ap vJ dpv (II) 
dTV ,, i=l clp i TV Y(" ") I p ,p J J>'l 

If our system is at equilibrium, then the following con­
straints exist regarding the chemical potential and pressure 
of the system, respectively, 11 01 

dµ( = dµ :' 
dP1 = dP" 

(I 2) 

(13) 

We next divide each differential by an infinitesimal change 
in the temperature and take these partial derivatives con­
strained to a path that satisfies the equilibrium of chemical 
potential and pressure (the symbol cr indicates that the de­
rivative is evaluated along that path). 

(~t =(a:I t 
(: t =(a;; t 

(14) 

(15) 

From the Gibbs phase rule we are able to specify n inde­
pendent variables in our system. We can fix the temperature 
and the n-1 independent mole fractions of the liquid phase to 
completely specify our system. Doing this, we can write the 
differential equations for the liquid phase as 

[~l =[aP; J (aT ) + ± (aP; J xi (~J (l7) 
clT CJ clT p' clT CJ i=l clpi T' ,pWati) clT CJ 

For the vapor phase, we arrive at 

(aµ1 J =(aµ1 J (aT) + ±[aµ1 J [apy J (i8) clT clTV clT . apv clT 
CJ pv CJ J=l J Tv,p~(katj) CJ 
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(aPvJ =(aP:J (aT) +±(aP:J (aprJ (l9) aT cr aT Pv aT cr i=I api T v,p;'(jati) aT cr 

where x; are the mole fractions of component i in the liquid 
phase. 

Substituting Eqs. (16) and (18) into Eq. (14) and noting 
that 

(aT) = I aT cr 
(20) 

yields 

(aµvJ n [aµvl [apvl I + ~ I J aTv L..., a V aT 
p v J=I pl Tv,p~(katj) cr 

(21) 

or 

(22) 

and, similarly for the pressure 

Recognizing that Eqs. (22) and (23) can be written in linear 
form, we can use matrix notation to compactly represent the 
system of equations in terms of a coefficient matrix (A), a 
solution vector (b), and an unknown vector (x); Ax= b. 
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(a VJ 
µi 

apl T'' ,p( (katl) 

(aP" J apl T " "(';ti) ,P, J 

(aµrJ 
ap~ T '' ,p ; (katn) 

(aµ~ J X 

ap~ T '' ,p;(katn) 

(aP"J ap~ T " !' (';t ) ,P, J n 

In order to implement the integrate method, a converged 
starting point must be used. To do this, one would use the 
direct method (or an iterative method), subject to the equilib­
rium conditions, at a specified temperature and liquid-phase 
mole fraction to find the first point (i.e., the liquid phase den­
sity and the vapor phase component densities) . For an equa­
tion of state that has the mole fraction, density and tempera­
ture as independent variables, all of the elements of the ma­
trix A and the solution vector b can be solved from the equa­
tion of state, either analytically or numerically. Thus, the un­
known vector xis given as x = A-1b. Then+ 1 coupled differ­
ential equations are then numerically integrated to yield the 
overall liquid phase density and the component densities of 
the vapor phase. The mole fractions can be extracted from 
the overall density and the individual component densities. A 
step in the temperature is taken next and the process is re­
peated until the critical point is reached. A block diagram 
(Figure 1) may be helpful in illustrating the technique. 

For the purpose of the problem at hand, we have used a 
fourth-order Runge-Kutta methodl111 to integrate numerically 
the coupled pair of differential equations. We find that for 
the same step size used in the direct method (0.02K), we 
achieve reliable results for the phase densities in about the 
same amount of time using the integrate method, as seen in 
Figure 2 and Table 1, respectively. But, if we increase the 
integration step size to I K, the integrate method provides re­
liable results for the coexistence densities with a computa-

TABLE 1 
CPU Time Required to Solve 

the Problem for Each 
Method at Various Step Sizes 

Step Size CPU Time 
Method (K) (sec) 

Direct 0.02 1.5 

Integrate 0.02 1.5 

Integrate 1.0 0.05 

Integrate 10.0 0.02 

lntegrate+Direct 10.0 0.02 

(tl ( aµj J -( aµr J aT1 aT" ' p' p ' 

(aJ]l = ( aµ~ J ( aµ~ J (24) 
aT1 

p' - aT" p'' 

(aJ;l ( aP1 

J -( aP" J aT1 
p' aT" p" 

tional speedup of 
around 30 compared to 
the direct method. At a 
step size of I OK, the 
integrate method starts 
to fail (i.e., produce in­
accurate coexistence 
densities), as seen in 
Figure 2. 

Integrate 
+ Direct Method 

The deficiency in the 
direct method is that 
above a certain step 
size in temperature, the 
method will not con­
verge, while the advan­
tage is that equilibrium 
is ensured upon con­
vergence (assuming the 
roots are not repeated) . 
Mirroring this is the in­
tegrate method, whose 
deficiency is that equi­
librium is not ensured 
at each step (owing to 
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Fix T start and {x/}. 

Calculate r/,p' 1, ••• p'n at T,,a,, 
using Direct or an iterative 

method. 

Fill the A matrix and b vector. 

Perform matrix inversion and 
solve for x. 

Calculate r/. p'',, ... p'n by taking 
one integration step in T. 

Print T, p1
, p', , . .. P'n. 

Is the specified exit criteria met, 
for example, is T :5 Tfinal ? 
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360 

360 

the numerical integration scheme), while the advantage is that 
relatively large steps in temperature can be taken. A combination 
of the two methods, wherein first the integrate method predicts a 
guess value for the coexistence densities at the next temperature 
(as opposed to using the previously converged values), while the 
direct method uses these better guesses to converge to a solution, 
would seem to allow for the use of a larger step size in tempera­
ture. Such an approach has been suggested before.l5,6-12

1 To this 
end, a combined integrate+direct method provided equilibrium 
densities in this problem for a step size of lOK with a computa­
tional speed of 75 as compared to the direct method alone. 

CONCLUSIONS 

A novel integration technique, here called integrate has been 
presented to solve phase equilibrium problems using equations 
of state. This method was shown to result in a computational 
speedup of around 30 relative to the direct method, owing to the 
larger step size the integrate method allows. Additionally, a com­
bined integrate+direct method proved most useful in using the 
best features of both approaches. Future work will look at both 
the integrate and a combined integrate+direct method in the so­
lution of more computationally demanding thermodynamic prob­
lems, such as tracing out liquid-liquid miscibility gaps or in de­
termining the P-T diagram for retrograde systems for compli­
cated equations of state. 
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