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ECONOMIC RISK ANALYSIS 
Using Analytical and Monte Carlo Techniques 
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Investment decisions are typically based on some form of 
cash-flow analysis, such as net present value (NPV) or 
internal rate of return (IRR). The analysis is first per­

formed using predicted performance of the project over the 
project life as if the predictions were deterministic. The sto­
chastic nature of these predictions can then be handled using 
a variety of risk analysis techniques, such as: best case/worst 
case scenarios; single-parameter sensitivity analysis (Strauss 
plots); analytical error propagation; Monte Carlo simulation; 
and decision trees. In this paper, we present the development 
and application of a Microsoft Excel spreadsheet template 
that facilitates analytical and Monte Carlo risk analysis 
of investment decisions. We have found the template par­
ticularly useful in teaching risk analysis to senior students 
in the design course. 

METHODS FOR ASSESSING RISK 

Best/worst case scenarios calculate a return on investment 
for the most profitable set of investment conditions and an­
other return for the worst possible set of conditions. This ap­
proach analyzes both ends of the spectrum in terms of return. 
Generally, however, the worst case will not exceed the mini­
mum return and the best case will. Because the expected re­
sult is somewhere between the two extremes, most evalua­
tions will not be resolved by this method. The method is use­
ful for those few cases where the worst-case scenario is found 
to be acceptable or the best case is found to be unacceptable. 

Single-parameter sensitivity analysis tests the variability 
of the result with respect to one economic variable. This type 
of risk analysis is common because the calculations and in­
terpretation are simple. Only one variable is changed at any 
given time, and the result (which is frequently linear) can be 
shown graphically on a Strauss plot (NPV versus change in 
the variable of interest). Because much information can be 
derived from a small amount of work, some companies man­
date that all capital appropriation requests be accompanied 
by sensitivity tests on key input values such as raw material 

1 Currently with IBM, Inc. , Burlington, Vermont 
2 Currently at Virginia Tech, Blacksburg, Virginia 

94 

price, labor, utilities, etc. This technique can show the break­
even point for each of the critical economic variables. 

Analytical methods use error propagation analysis to evalu­
ate the risk involved. This approach uses statistical identities 
to relate the variability of each parameter to its distribution. 
In order to define variability in the desired risk measure, the 
relationship between the parameters and the desired measure 
is combined in equation form. This equation combines all 
facets of variability in the economic input values into a single 
expression of variability in the desired risk measurement. The 
inclusion of variability and multiparameter influence upon 
the result makes the analytical method applicable for exam­
ining risk where the variability is well defined and the input 
parameters are assumed independent. 

Monte Carlo simulations have been used to simulate ran­
dom variation in sets of related variables. First, a statistical 
distribution is specified for each input. Then the simulation 
randomly selects one value for every input from the speci­
fied distribution for that item. The set of random input values 
is used to calculate a result. This process is repeated a suffi­
cient number of times so that the distribution of outcomes 
can be used to reliably predict the variability of the calcu­
lated result. The simulation can be run hundreds or even thou­
sands of times to explore every possible combination of vari­
ables. Monte Carlo methods have gained increasing atten­
tion due to the increased power and decreased cost of desk-
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top computing. Once the distributions are chosen for each 
economic input, repeating the calculations becomes trivial. 

Decision trees employ a method of weighting an event's 
economic impact by its probability. The use of decision trees 
follows a left-to-right progression where each decision builds 
upon the previous one until a final outcome is reached. Each 
branch of the decision tree has a probability and an economic 
value. The expected value of a decision can be calculated by 
summing the product of the probability and economic out­
come to each decision node. Comparing the result of each 
probability node will result in an ultimate, numerically based 
decision. The advantage of this method is the ability to incor­
porate calculated probabilities and economic factors to give 
a numerical result for a complex decision-making process. Ill 

The logical place to teach these risk-analysis techniques in 
most chemical engineering curricula is in the capstone de­
sign course. Best/worse case techniques and single-param­
eter sensitivity techniques are readily mastered by all stu­
dents. The analytical, Monte Carlo, and decision-tree tech­
niques can be more of a challenge, depending on the statisti­
cal background of the students and the time available for them 
to write their own simulation routines. Recognition of this 
was the impetus to develop a spreadsheet-based learning tool 
that could be used to facilitate risk analysis using both ana­
lytical and Monte Carlo methods. 

IMPLEMENTING THE ANALYTICAL AND 
MONTE CARLO METHODS 

A cash-flow analysis was used to demonstrate analytical 
and Monte Carlo techniques. A sample cash-flow table was 
generated using net present value (NPV) as the result of in­
terest 

Nyears C C h Fl 
N P V I 

,,_, onstant as ow 
et resent a ue= £... . 

i= I (l+MAR)' 
(I) 

Cash Flow 
ConstantCashFlow 1 = . 

(1 + Inflation Rate)' 
(2) 

Cash Flow= 

Income-Expenses-Investment- Working Capital-Tax (3) 

Tax=Profitpre-tax *Tax Rate (4) 

Profit pre-tax = Income-Expenses- Depreciation (5) 

This cash-flow table was incorporated into a spreadsheet tem­
plate to facilitate analytical and Monte Carlo analysis of the 
NPY. The template allows the user to tailor the analytical and 
Monte Carlo analyses to a specific set of economic vari ­
ables, including the distribution of each variable. The next 
part of this article will first describe the theoretical basis 
for each analysis and then its implementation in the ac­
tual Excel spreadsheet. 
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In this paper, w e present the 
development and application of a 

Microsoft Excel spreadsheet template 
that f acilitates analytical and 

Monte Carlo risk analy sis of 
investment decisions. 

ANALYTICAL METHOD 

The cash-flow analysis provides the relationship between 
our result and the inputs: income, expenses, working capital, 
investment, and inflation rate. In order to determine the vari­
ability in the result, we will use the method of error propaga­
tion .12·31 When a variable, c, is a function of a number of vari­
ables, x

1
, x

2
, ... x

0
, it can be written 

(6) 

It follows that if each x; is independent and cr~ represents the 
variance of c, then 

(7) 

By applying this equation to economic variation, with NPV 
as c, fixed capital investment (Inv) as x

1
, income (Inc) as x

2
, 

expenses (Exp) as x3, working capital (WC) as x
4

, and infla­
tion (Inf) as x

5
, we arrive at the following expression for the 

variance of the net present value: 

? 2 
2 (aNPv )- 2 (aNPY ) 2 

CY PV = ainv cr Inv + ainc CY Inc + 

(aNPY )2 
2 (aNPY )2 

2 (aNPY )2 
2 aExp crExp + awe Owe + ainf crlnf (8) 

Using Eq. (8), if we can define all of the terms on the right 
side of the equation, we should be able to calculate the vari­
ance of the net present value. The problem then becomes one 
of calculating the components of the right side. 

Approximating the partial differentials • Partial differ­
entials represent the slope of the function with respect to the 
variable of interest at a small increment. If we assume that 
the function responds nearly linearly due to an incremental 
change in the variable of interest, then we could approximate 
the partial differential by changing the variable a small per­
centage above and below the base case value and calculating 
the slope from the two resulting points. Figure 1 shows such 
a change and resultant NPV with a line fit. 

We can use this approach to calculate the partial deriva­
tives of NPY with respect to the rest of the variables follow-
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ing a similar procedure. The task then becomes one of esti­
mating the variances for each variable. 

Estimatini: individual variances • Defining the variance 
requires estimation based on past experience or future pre­
diction. For our purposes, we assumed that each of the five 
input variables follows one of three distributions: normal, 
uniform, or modified-beta. Although other distributions could 
be added, these three distributions can represent most of the 
types of distributions encountered. Each distribution requires 
additional inputs to define the variance. The normal distribu­
tion requires the standard deviation as an input (the variance 
is simply the square of the standard deviation). The mean 
value is assumed to be the base case value, m. For the other 
two distributions, we need estimates of the maximum, mini­
mum, and the most likely value for the beta distribution. Thus, 
we define 

a minimum value 

b maximum value 

m = most likely value (mode) 

The variance for the uniform distribution can be calculated 
using141 

2 (b-a)2 

CJ=---
12 

(9) 

The modified-beta distribution uses these maximum and mini­
mum inputs to calculate variance based on the following PERT 
(Program Evaluation and Review Technique) simplified for­
mula: 151 

(10) 

Modified-beta distributions can be skewed either positively 
or negatively. The expected mean is different from the most 
likely value and is calculated by 

µ 
a +4m+c 

6 
(11) 

Implementini: the analytical approach on a spreadsheet 
Once the variance for each variable and the partial differen­
tial of NPV with respect to each variable ( or input) has been 
approximated, the overall variance can be calculated. The 
partial derivative for each variable is estimated by modifying 
the individual parameter a set percentage (specified by the 
user) and calculating the slope between the two perturbed 
points. The variance of each parameter necessary to satisfy 
Eq. (8) can be correlated from input values of uncertainty. 
Equation 8 combines the parts to calculate the variance in net 
present value. We have now quantified the uncertainty in our 
economic decision variable using the analytical method. 

The assumption of independence is one weak aspect of the 
analytical method. Some of the variables are often interre­
lated. For example, expenses are often related to investment, 
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working capital is sometimes related to investment, etc. In 
this respect, the Monte Carlo simulation may be more appro­
priate where such interrelations exist. The Monte Carlo tech­
nique does not explicitly account for interrelations either, but 
more combinations of variables are explored, as is illustrated 
in the following paragraphs. 

MONTE CARLO METHOD 

Monte Carlo simulations can reduce error compared to the 
analytical approach by performing random walks within 
specified distributions and determining the results directly 
from repeated trials . In this case, we are interested in finding 
the variability in the net present value based on the variabil­
ity in the five economic parameters mentioned earlier. 

Using assumptions for individual variability, we can pick 
sets of random expenses, incomes, investments, etc., and cal­
culate a result for that set using the cash-flow equations (Eqs. 
1-5) to find a net present value for the set. Variance in net 
present value can then be extracted directly from the distri-
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Figure 1. Determining the partial derivative of NPV with 
respect to investment, using a single-parameter 

Strauss plot. 
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Figure 2. Normal probability plot for 
mean= 10 and 0" 2 = 4. 
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bution of net present value results. 

Statistical derivation • Normal, uniform, and modified­
beta distributions are used for the Monte Carlo simulations 
as well. The normal distribution represents the standard nor­
mal or Gaussian curve. For such a distribution, approximately 
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Figure 3. Uniform probability plot for minimum 2 and 
maximum 10. 
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Figure 4. Modified-beta probability plot for minimum 0, 
maximum 7, and mode 2. 
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Figure 5. Cumulative modified-beta probability distribu­
tion for minimum 0, maximum 7, and mode 2. 
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67% of all values lie within one standard deviation of the 
mean, 95 % lie within two standard deviations, and 99% lie 
within three. A normally distributed variable can be charac­
terized by its mean and variance (or standard deviation) . Fig­
ure 2 illustrates a normal probability curve with mean of ten 
and variance of four. Of course, the sum of the probabilities 
for all occurrences is one. 

The uniform distribution gives equal probability for any 
occurrence between the minimum and maximum endpoints, 
and is completely characterized by these values. Figure 3 
shows a uniform distribution with a minimum and maximum 
of ten and two, respectively. 

The modified-beta distribution can be skewed in either di­
rection from the midpoint. It is characterized by its most likely 
value (mode) and estimates of low and high values. Figure 4 
shows the probability distribution for a sample modified-beta 
distribution with a mode of two, a low of zero, and a high of 
seven. In this case, there is a lower probability of values to 
the left of the mode than to the right. 

Using the distributions for a Monte Carlo analysis requires 
programming our spreadsheet to generate random numbers 
and then to extract a value from the normal, uniform, or modi­
fied-beta distributions established by the input of uncertainty 
for the variables. 

Generatini: random values within a distribution • The 
Microsoft Excel spreadsheet has some built-in statistical func­
tions. For instance, given a random number, a mean, a stan­
dard deviation, and a standard distribution, the function 

NORMINV(RAND(), MEAN, STANDARD-DEVIATION) 

will return a random value from that distribution. A similar 
function exists for the uniform distribution. No such function 
exists for the modified-beta distribution, however, so it had to 
be programmed separately. The procedure below outlines the 
calculation routine for the modified-beta distribution. The same 
approach could be applied to any desired distribution. 

Using the modified-beta probability distribution function 
(Eq. 12, Figure 4), we integrate to get the cumulative prob­
ability distribution (see Figure 5). Then, Excel generates a 
random number between one and zero corresponding to an 
f(x) (Figure 5). The x-value is selected based on the random 
f(x) and scaled to the minimum and maximum range speci­
fied. The result is a random value within the distribution 

where 

a 

b 

f(x) (a+b+l)!xa(l-x)b 
a!*b! 

minimum value 

maximum value 

(12) 

Generatini: the simulations • The randomized value of 
an input variable (for example, expenses) is then combined 
with the other randomized values of the variables in a set 
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using Eqs. (1-5) to calculate one NPV. In a Monte Carlo simu­
lation, the calculation of NPV is repeated multiple times, each 
from a new set of random inputs. Initially, we anticipated 
that 50 to 100 iterations would produce a stable and repro­
ducible NPV distribution. With this number of iterations we 
found that the results were very sensitive to the bin size se­
lected for frequency analysis and often had not stabilized. 
Considering that the computing power is readily avail­
able and that a calculation requires only one or two sec­
onds, we increased the iteration count to 500, which 
proved to be sufficient. 

The variability in net present value can be extracted di­
rectly from the dataset. The specific use of the spreadsheet is 
discussed next, followed by a case study. 

USING THE SPREADSHEET TOOL 

Modem spreadsheets have the usefulness of being program­
mable, extensible, easy to use, and good teaching tools. Un­
like various programming languages that hide the intermedi­
ate results, spreadsheets allow the user to see the inputs, the 
dataset, and any calculations. The risk analysis template de­
veloped here provides all these aspects for both the analyti­
cal and Monte Carlo analyses. 

To use the template, first the user must supply the inputs 
on the first tab of the spreadsheet. Inputs include base-case 
(mean or mode) values for investment, expenses, income, 
inflation rate, and working capital. Cash-flow analyses also 
rely on pre-set variables such as project life, minimum ac­
ceptable return, tax rate, and depreciation schedule. Mini­
mum acceptable return (MAR) and tax rate are the only pre­
set variables that can be modified by the user in this tool. The 
depreciation is fixed at seven-year modified accelerated cost­
recovery system (MACRS) and project life is fixed at ten 
years, all typical values for an industrial project. 

Next, the user must select the distributions for each of the 
variables. There is a pull-down menu for selecting the distri­
bution type: normal, uniform, or modified-beta. Below the 
pull-downs are cells for specifying the variability of the dis­
tribution, selected by 

Normal • Requires standard deviation, cr ; uses base­
case values as mean 

Uniform • Requires a (minimum) and b (maximum) 

Modified-beta • Requires a (minimum) and b 
(maximum); uses base-case values as most likely 
(mode) 

These entries link to calculation tabs in the spreadsheet. 
No further user input is required. The analytical result for 
variance is shown on the INPUT tab, while the Monte Carlo 
results are shown on the RESULTS sheet. On the HISTO­
GRAMS tab are histograms for net present value as well as 
for each variable. Here the user can assess whether the simu­
lation adequately represents the input distribution. Because 
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the Monte Carlo calculation is dependent on random-num­
ber generation, recalculating the spreadsheet can result in 
slightly different distributions. 

Both analytical and Monte Carlo results include a confi­
dence interval for NPV. Sometimes it is more useful to calcu­
late the probability of a net present value greater than zero 
(P NPv~0). Such a calculation would represent the probability 
of the project meeting or exceeding the minimum acceptable 
return given the expected variation in the variables. If the 
distribution result is normally distributed, then a simple tech­
nique for calculating p-values in Excel is to use the 

NORMDIST (VALUE, MEAN, STANDARD-DEVIATION, TRUE) 

function. Setting VALUE=0 and subtracting the result from one 
will calculate the probability of the project NPV exceeding 
the minimum acceptable return. If the distribution is not nor­
mal, then probabilities must be determined directly from the 
frequency distribution histogram. 

CASE STUDY 
A simple case study based on a hypothetical project can 

help illustrate application of the template. Distributions for 
the variables have been selected based on historical experi­
ence, probable error in cost estimation, etc. The minimum 
acceptable return (MAR) is set at 20% and tax rate set at the 
federal corporate level of 34%. Project life is 10 years. Table 
1 summarizes the inputs necessary for computing an analyti­
cal and Monte Carlo risk analysis. 

TABLE 1 
Base-Case Parameters for Risk-Analysis Case Study 

Variable Base Case Distribution Max Mi11 Std. Dev. 

Investment $10MM Normal 2 

Working Capital $ IMM Uniform 2 

Expenses $4MM Modified-beta s 3 

Income $8MM Modified-beta 10 7 

Inflation 3% Normal 1% 
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Figure 6. Histogram of net present value given con­
straints in Table 1. 
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The base-case values seen in Table 1 provide a starting point 
for the study. The variability information permits study of 
the variation in the net present value due to the predicted 
variation of each parameter. With this information, the risk­
analysis tool has the necessary inputs to perform both the 
Monte Carlo and the analytical determination of the variance 
in net present value. 

Using the Excel template, the expected or deterministic 
NPV for the base case is found to be $1.18 MM. The tem­
plate also gives the analytical result for net present value vari­
ance as $4.455 MM2 with a standard deviation ( o ) of $2. 11 
MM. Assuming a normal distribution, the 95% confidence 
interval can be generated by taking the mean NPV $1.09 MM 
plus/minus 2 o , or $5.28 MM to $-3.09 MM. The p-value for 
NPV greater than 0 is 0.7 , signifying a 70% chance of the 
project exceeding the minimum acceptable return. 

Monte Carlo results are al o generated by the template us­
ing 500 iterations. The data set is displayed using histograms. 
For this case, the mean is found to be $1.46 MM with a stan­
dard deviation of $2.09 MM. A 95% confidence interval for 
net present value is $5 .50 MM to $-2.69 MM. The p-value 
for NPV greater than zero is 0.77, signifying a 77% chance 
of the project exceeding the minimum acceptable return . The 
Monte Carlo results are close to but slightly different than 
the analytical result. 

The histogram in Figure 6 shows a sample of the simula­
tion. Again, because the results are based on random-number 
generation, each recalculation could have slightly different 
results. With 500 iterations, the mean and confidence inter­
vals are essentially constant between simulations, but the 
shape of the histogram varies much more than we had antici­
pated. The central limit theorem suggests that the sampling 
distribution of the mean can be approximated by the normal 
distribution, regardless of the population. Therefore, we would 
expect the outcome of a calculation involving large numbers 
of input variables to be normally distributed, regardless of 
the di stribution of the inputs. This does not appear to be the 
case for our cash-flow analysis and suggests that the Monte 
Carlo results are probably a better measure of project risk 
than the analytical results. 

USING THE TEMPLATE 
IN THE CLASSROOM 

We have used this template for several years in the capstone 
design course and have found it to be useful in teaching the 
concept of risk analysis and analytical estimation of that risk. 
The students perform a feasibility analysis of a new project 
or plant in the fall semester. As part of thi s analysis , they are 
asked to include an economic analysis and risk analysis of 
the venture, both in their written report and their oral presen­
tation to the management of Fictitious Chemical Company, 
their hypothetical employer. 

For the economic analysis, students use a spreadsheet tern­
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plate that they have each been asked to generate in a prior 
homework assignment. For the risk analysis, however, most 
of the students were historically limited to the single-param­
eter sensitivity approach since not all of them had the statis­
tical background or time to conduct the more elaborate analy­
ses. Some of the more capable groups are challenged by ask­
ing them to perform an analytical or Monte Carlo analysis to 
illustrate the techniques to the entire class. 

With this template now available, we are able to ask all the 
students to apply the full spectrum of risk analysis techniques 
to their projects. They are provided with the spreadsheet file 
and told that they are free to modify it or use it as they see fit. 
We find that use of the template and this approach allows us 
to concentrate more on the actual teaching of risk analysis 
and less on the programming required to do the analysis . All 
the students are able to successfully apply the software. Those 
with a strong statistical background tend to do a better job of 
interpreting the results. 

CONCLUSIONS AND FUTURE WORK 

Risk analysis is a critical part of any project decision. In­
creasing the minimum acceptable return or setting higher 
breakpoints are simple methods of compensating for risk that 
have been used as shortcuts in the past. The goal of this re­
search was to develop a spreadsheet template for quantifying 
the risk in the discounted cash-flow measure, net present value. 
Analytical and Monte Carlo methods were implemented in a 
Microsoft Excel template for ease of use. Both methods result 
in a mean and a standard deviation value. The template also 
calculates confidence intervals based on the results. 

The template is a work in progress. We hope, in future ver­
sions, to be able to streamline some of the Monte Carlo simu­
lations, to develop macros for group calculations, and to by­
pass some of the more computationally intensive tasks. We 
also hope to add the ability to alter project life, iteration num­
ber, depreciation schedule, etc. 

We have found the template to be quite useful in teaching 
risk analysis concepts to our seniors in the plant design course. 
Faculty who would like to try it in their courses may contact 
Bruce Barna to get the latest version. Be advised that the file 
is large (approximately 6.5MB). We would appreciate feed­
back on the experiences of other users. 
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