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Numerous biochemical processes occurring in nature 
or man-made systems (e.g., biochemical reactors) 
involve randomly behaving viruses, fungi, bacteria, 

and plant and animal cells that are discrete and mesoscopic 
in size. This gives rise to incessant fluctuations in their char­
acteristic properties, including their number concentrations 
(density), movements, and metabolic activities. Such fluc­
tuations are profoundly magnified when the number concen­
trations of pores, spores, or cells are very low as found, for 
instance, in the tail end of thermal disinfection of foodstuffs. 

Medical needs and public health concerns often demand 
that the disinfection process be complete or nearly complete. 
Hence, it is indeed appropriate that the notion and methodol­
ogy of stochastic processes have been introduced in most of 
the major textbooks on biochemical engineering through 
analysis and modeling of the disinfection process;P·4l the dis­
course in these textbooks is based on the original contribu­
tions of Fredrickson[5l and Aiba and Toda. [6l According to 
Ramkrishna, [7l "Fredrickson was the first to point out the 
importance of stochastic analysis in dealing with steriliza­
tion processes." The crux or essence of stochastic analysis 
and modeling is in their capability to estimate or predict in­
herent fluctuations of the characteristic property of a random 
phenomenon or process and the distribution of this fluctuat­
ing property. In these textbooks, however, only the mean (the 
first moment), or at most, the variance (the second moment 
about the mean) of the fluctuating number concentration of 
cells during disinfection is given. The evaluation of additional 
quantities defined in terms of the moments of the number 
concentration of cells higher than the second moment is use-
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ful and often necessary to gain insight into the stochastic, or 
random, nature of the phenomenon or process of interest. 

In fact, mesoscopic entities in the form of bubbles, drop­
lets, and particles are ubiquitous in many phenomena, pro­
cesses, and operations taught in various courses in chemical 
engineering besides biochemical engineering. Some of these 
courses are chemical reaction engineering, transport phenom­
ena, separation, particle technology, material science and 
engineering, and surface science. The phenomena, processes, 
and operations involving mesoscopic entities includes het­
erogeneous reactions,[sJ gas absorption,[9l distillation, liquid­
liquid extraction, adsorption,(1°.11l fluidization,P 2

-
13l filtration,[1 4l 

crystallization,[1 5l solids mixing,[16l and grinding and attri­
tion. [i 7.1si With slight adaptation, the current contribution can 
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surely be made useful for several chemical engineering 
courses. 

The current effort aims at presenting the fluctuations in the 
microorganism's number concentration in the course of dis­
infection not only in terms of the variance but also the skew­
ness (the third moment about the mean over the third power 
of the standard deviation) and the kurtosis (the fourth mo­
ment about the mean over the fourth power of the standard 
deviation). The results would be useful as supplementary 
materials to what is already available. Following the text­
books mentioned above, the example adopted is the thermal 
disinfection of a cell population, specifically that of Staphy­
lococcus aureus, [19l where the number concentration is con­
sidered to decrease according to the first-order rate law. 

Interest in stochastically analyzing and modeling bacteria, 
or cell populations in general, has been steadily growing in 
recent years in view of their importance in different areas of 
biochemical engineering and biotechnology. Various research­
ers have resorted to the master-equation and other closely 
related algorithms; the majority, if not all, of them have con­
sidered linear systems or processes. Tsuchiya, et al., [20J re­
viewed their works on the growth and replication of cultures 
of unicellular organisms. Ramkrishna[21 J wrote an informa­
tive exposition containing a variety of stochastic algorithms 
for modeling the dynamics of cell populations including the 
master-equation algorithm. Stephanopoulos and Fred­
rickson[22l analyzed the extinction process by the prey-preda­
tor model involving both deterministic and stochastic com­
ponents. Nassar, et al., [23l stochastically modeled the dynam­
ics of a unicellular organism population; they[24l also mod­
eled the enzymatic degradation of cellulose. Lauffenburger 
and Linderman[25l published a monograph based on their ear­
lier works on receptor/ligand trafficking by the master-equa­
tion algorithm. 

MODEL FORMULATION 

As in any stochastic analysis and modeling, a mathemati­
cal model characterized by a random variable or variables is 
required for the system under consideration. It is formulated 
according to the procedure outlined belowY6·31l 

Description of the System • The system under consider­
ation is the population of microorganisms, or cells, that are 
thermally deactivated. The status, or state, of the system is 

specified by the number ( or size) of the population, that de­
creases due to the death of cells that have ceased to grow, one 
at a time, that do not reproduce throughout the deactivation. 
It is assumed that each member of the cell population alive at 
t = 0 is independently subjected to the same risk of dying. 
Moreover, the current size of the cell population depends 
solely on the size of the immediate past population. In other 
words, the system possesses the so-called Markovian prop­
erty, implying that only the current state of the process or 
system is relevant in determining its future behavior; [26-28l in 
fact, the system under consideration constitutes a special type 
ofMarkov processes (time-continuous Markov chains) called 
"the pure-death process."[27•28l 

Identification o(Random Variable and State Space • The 
number of live microorganisms, simply termed cells hereaf­
ter, at time t is taken as the random variable of the process of 
deactivation, N(t); a realization of N(t) is denoted by n. All 
the possible numbers oflive cells are the states of the process 
and the collection of these numbers, {~,n0-l, ... ,2,l,0}, is the 
state space, where~ is the initial number of cells susceptible 
to thermal disinfection, i.e., n at t = 0. 

Construction of Transition Diagram • Since no cells will 
be produced, the size of the population will decrease through­
out disinfection. In the transition diagram of the process pre­
sented in Figure 1, the circles indicate the possible states of 
the system and the arrows describe transitions of the system 
at any moment. The figure is a typical representation of the 
time-homogeneous pure-death process. 

Definition of Transition-Intensity Functions • The rate 
law adopted here for thermal deactivation (disinfection) 
isl-3.5] 

dn 
--=kn 

dt 
(1) 

where n is the number of cells at a specific time t; this ex­
pression is known as Chick's law. [32l The intensity of transi­
tion (intensity function) is defined as the instantaneous rate 
of change of the transition probability. [27-23l Hence, the inten­
sity of death, µn, for the thermal disinfection under consid­
eration can be assumed to be of the form 

(2) 

where k is a proportionality constant. This expression im­
plies that the cell-death rate is proportional to the number of 

0···0 0 0···0 
Figure 1. Transition diagram of 
the pure-death process: µn is 
the intensity of death, and 
n

0
,n

0
-1, ... ,n+ 1,n,n-1, ... ,2,1,0 are 

the states of the process. 
~ ~ ~ ~ ~ ~ 
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live cells. Clearly, the intensity of death, µn , is only a func­
tion of n and independent of time, and thus time homoge­
neous. [21.28] 

Derivation of the Master Equation • The governing equa­
tion of any Markov process expresses the infinitesimal change 
of the transition probability, p/s,t), between state i at arbi­
trary time s and state j at time t.[26

•
27l For convenience, the 

governing equation is often written in terms of the state (ab­
solute )35:s;obability rather than the transition probability. The 
absolute probabilities, p/t) and P;(t), are related through the 
transition probabilities, p/s,t) 's, as 

pj(t)= L_,Pi(s)pij(s,t) 

This renders it possible to transform the transition probabili­
ties in the governing equation into the absolute probabilities, 
thereby yielding the gain-loss or probability-balance equa­
tion, or master equation; [23

,
33l for the pure-death process un­

der consideration, it is derived as follows: 

• With N(t) = n given, it is assumed that during time inter­
val (t, t+At): (1) the conditional probability that a death will 
occur, i.e., a live cell will die, is µn At + o(At), and (2) the 
conditional probability that more than one death will occur is 
o(At), which is defined such that 

. o(~t) 
£1m --=0 

Ll.t • O ~t 
(3) 

Naturally, the conditional probability of no change in the 
number of live cells during this time interval is [l - µn At -
o(At)]. 

• Let the probability that exactly n cells are alive at time t 
be denoted as p/t) = Pr[N(t) = n], n = I\, I\ - 1, ... ,2,1,0. 
Then, for the two adjacent time intervals, 
(0,t) and (t, t+At), the occurrence of exactly 
n cells being alive at time (t+At) can be 
realized in the following mutually exclu­
sive ways: 

1) With a probability of Pn+/t) 
[µn+

1
At+o(At)], exactly one cell will die 

during the time interval (t,t+At), provided 
that exactly (n+ 1) cells are alive at time t. 

2) With a probability of o(At), exactly j cells 
will die during the time interval (t, t+At), 
provided that exactly (n+j) cells are alive 
at time t, where 2 ::=;j :s; (n

0
-n). 

3) With a probability of p/t)[l - µnAt -
o(At)], no cell will die during the time in­
terval (t, t+At), provided that all n cells are 
alive at time t. 

0.30 
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Pn (t + ~t) = Pn (t)(l - µn~t) + Pn+l (t)(µn+l~t) + o(~t) ( 4) 

• Rearranging this equation and taking the limit as At • 0 
yield the master equation of the pure-death process given 
below (see Figure 1): 

d 
dt Pn (t )= µn+!Pn+l ( t )- µnPn ( t) n = n0, n0 -1, ... ,2,1,0 ( 5) 

For n = n
0

, we have µn 0 +1 =0; thus 

d 
dt Pno(t) = -µnoPno(t) 

or, by virtue ofEq. (2), 

d 
- Pn (t) = -kn 0 pn (t) dt o o 

For n = n
0 

- 1, n
0 

- 2, ... ,2,1, Eq. (5) is 

d 
dt Pn(t) = µn+!Pn+J(t)- µnPn(t) 

or 

d 
dt Pn (t) = k(n + l)Pn+l (t) - knpn (t) 

Finally, for n = 0, we have µ 0 = 0; thus, 

or 

(5a) 

(5b) 

(5c) 

Solution of the Master Equation • As can be discerned 
from Eq. (2), the intensity of death, µn, is of linear form; as 

t = 0 

, = 0.02 1 
't = 4 

20 30 40 50 60 70 80 90 100 

• Summing all these probabilities and con­
solidating all quantities of o(At) yield 

Figure 2. Temporal evolution of the binomial distribution of the 
number of live cells, N(t), with n

0 
= 100. 
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a result, the master equation, Eq. (5), can be solved recur­
sively, thereby yielding the probability that n cells will be 
alive at time t, p/t), as[5.34l (see Appendix A, available at 
<http ://www.engg.ksu.edu/CHEDEPT /fan.htm>) 

The above expression indicates that the distribution of ran­
dom number N(t) is binomial with two parameters. One of 
the parameters, I\, representing the initial value ofN(t), sig­
nifies the total number of the events that can possibly occur, 
and the other parameter, e·kt, signifies the probability of oc­
currence of one event. For the thermal disinfection under 
consideration, n

0 
is the number of cells alive at t = 0, which 

will eventually die, and e-kt is the probability of an individual 
cell being alive at time t. The temporal evolution of the bino­
mial distribution as given by Eq. (6) is illustrated in Figure 2; 
for simplicity, n

0 
is specified to be 100 and kt is lumped as 'C . 

Moments about the Mean • With the solution of the mas­
ter equation in hand, we can proceed to calculate the mean 
and variance of the process that should constitute the core of 
any stochastic analysis and modeling. Furthermore, higher 
moments about the mean, such as skewness and kurtosis, are 
determined; they provide additional information useful for 
characterizing the stochastic and statistical properties of the 
process.[27

,
34

-
36l For illustration, the derivation of the skew­

ness is elaborated in Appendix B (available at <http:// 
www.engg.ksu.edu/CHEDEPT/fan.htm>) 

Mean. The mean, E[N(t)] or m(t), which is the expected 
value (first moment) of the distribution of random variable 
N(t), is defined as 

m(t) = E[N(t)] = L npn(t) (7) 
n 

The mean or expected value, m(t), is the weighted sum of the 
realizations of the random variable where the weights are the 
probabilities corresponding to those realizations. [34l 

For the thermal disinfection under consideration, the mean 
in terms of dimensionless time 'C is 

(8) 

The normalized, i.e., dimensionless form of the mean, m(i), 
is 

(9) 

Variance. The variance, Var[N(t)] or 0
2 (t), is the second 

moment of the distribution ofrandom variable N(t) about the 
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mean, m(t); thus 

02 (t)=E{[N(t)-E[N(t)]]
2 
}= L {n-E[N(t)J}2 Pn(t) (10) 

By expanding the above equation, 0
2 

( t) can be related to the 
mean, m(t), as 

02 (t) = E[N2 (t) ]- m2 (t) (11) 

In the above expression, E[N2(t)] is the second moment of 
N(t), i.e. 

(12) 
n 

For the thermal disinfection under consideration, the vari­
ance in terms of dimensionless time 'C, 0

2 
( 1:), is, from Eqs. 

(8) and (11) 

(13) 

Standard Deviation. The standard deviation, 0(t), of the 
process is the square root of the variance, 0

2 
( t) ; thus 

[ ]
1/2 

0(t)= 02 (t) (14) 

The variance, 0 2 (t), or more specifically, the standard de­
viation, 0(t), signified the fluctuations, i.e., scatterings, of 
the values of the random variable about their mean. 

For the thermal disinfection under consideration, the stan­
dard deviation in terms of dimensionless time 'C , 0( 1:), is, 
from Eqs. (13) and (14) 

0( 1:) = ✓n 0 e--c (1- e --c) (15) 

Coefficient o(Variation. The coefficient of variation, CV(t), 
is the quotient ( or ratio) of the standard deviation, 0( t) , and 
the corresponding mean, m(t); thus[35l 

CV(t)= 0(t) 
m(t) 

(16) 

For the thermal disinfection under consideration, the coef­
ficient of variation in terms of dimensionless time 'C, CV( 1:), 
is, from Eqs. (8) and (15), 

CV(i)= ~l-e~-c 
n

0
e -c 

(17) 

or 

Skewness. The skewness, y(t), is the quotient (or ratio) of 
the third moment of the distribution of random variable N(t) 
about the mean, m(t), and the third power of the standard 
deviation, cr(t); thus[36l 
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E{[N(t)-E[N(t)]]
3

} 

y(t)= ~----- 3 

( E{[N(t)-E[N(t)]J2}) 

= - 3

1
-~ {n -E[N(t)l}3 Pn(t) 

CT (t) L,; 
n 

(18) 

By expanding the above equation, y(t) can be related to the 
mean, m(t), and the standard deviation, CT(t), as 

y(t) = - 3

1
-{E[N3 (t) ]-3m(t)CT2 (t)- m3 (t)} (19) 

CT ( t) 

where E[N3(t)] is the third moment ofN(t) defined by 

(20) 
n 

Skewness characterizes the degree of asymmetry of the dis­
tribution ofrandom variable N(t) about the mean, m(t). Posi­
tive skewness indicates a distribution with a longer tail to the 
right of the mean than to the left, and negative skewness in­
dicates a longer tail to the left of the mean than to the right. It 
vanishes for any symmetric distribution. 

Forthe thermal disinfection under consideration, the skew­
ness in terms of dimensionless time 'C, y( 1:), is, from Eqs. 
(8), (15), and (19) 

(1-e--c )-e--c 
y( 1:) = ---;======= (21) 

✓n 0 e--c(1-e--c) 

Kurtosis (Curtosis). The kurtosis, k(t), is the quotient (or 
ratio) of the fourth moment of the distribution ofrandom vari­
able N(t) about the mean, m(t), and the fourth power of the 
standard deviation, CT(t); thus[36l 

E{[N(t)- E[N(t)]J4} 
k(t)= ~----- 4 

( E{[N(t)-E[N(t)]J2}) 

= + L {n-E[N(t)J}4Pn(t) 
CT ( t) 

n 

(22) 

By expanding the above equation, k(t) can be related to the 
mean, m(t), the standard deviation, CT(t), and the skewness, 
y(t), as 

k(t)= 

+{E[N4 (t) ]-4m(t)y(t)CT3 (t)-m 2 (t)[6CT2 (t)+m 2 (t) ]} 
CT (t) 

(23) 

where E[N4(t)] is the fourth moment ofN(t), i.e., 
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Figure 3. Normalized mean, m, and standard deviation, 
CT, as functions of the dimensionless time, 'C, exhibiting 

the entire range of the number concentration of live cells. 
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(24) 
n 

Kurtosis is a measure of how outlier-prone, or peaked, the 
distribution of random variable N(t) is. The kurtosis of a dis­
tribution that is less outlier-prone than the normal distribu­
tion tends to be greater than 3, which is the kurtosis of the 
normal distribution, and the opposite is the case for a distri­
bution that is more outlier-prone. 

For the thermal disinfection under consideration, the kur­
tosis in terms of dimensionless time 'C , is, from Eqs. (8), ( 15), 
(21), and (23) 

(25) 

NUMERICAL SOLUTION 

The mean, variance, skewness, and kurtosis of N(t) have 
been computed from their corresponding analytical expres­
sions, Eqs. (8), (13), (21), and (25), respectively. They are 
functions of both the size of the initial cell population, n

0
, 

and the time, t. The value of the proportionality constant, k, 
in the transition intensity, Eq. (2), can be recovered through 
the least-square fitting of the expression for the mean, Eq. 
(8), to the available experimental data of the thermal disin­
fection by means of a nonlinear minimization method, e.g., 
the Levenberg-Marquant method. [37l 

RESULTS AND DISCUSSION 

The model derived is illustrated with the same set of the 
available experimental data for the thermal death of S. aureus 
strain S-1 in neutral phosphate bufferl19l as those adopted by 
the major textbooks in biochemical engineering. [1-

4l These data 
have been obtained at the temperatures of 325.15 K (52°C), 
327.15 (54°C), and 329.15 (56°C), thereby yielding the val­
ues ofk as 0.0192 s·1 (1.15 miu-1

), 0.0362 s·1 (2.17 miu-1
), and 

0.0678 s·1 (4.07 miu-1
), respectively. With these values ofk, 

the mean, as well as the variance or standard deviation, skew­
ness, and kurtosis, of the number concentration of live cells 
have been computed. These quantities are graphically pre­
sented and their significance is discussed. 

Mean• The mean, m(i), and the normalized mean, m(i), 
have been computed according to Eqs. (8) and (9), respec­
tively. Only the latter, which is the exponential decay func­
tion independent of any parameters, is graphically plotted in 
Figures 3 and 4 as a function of dimensionless time 'C . The 
former exhibits the entire range of m(i) and the latter, the 
low range. Naturally, Eq. (8) or (9) as well as m(i) are in 
accord with those given in the available textbooks[l-4l as well 
as in the original contributions.l5-6l The experimental data[19l 

are also superimposed in both figures for comparison. 

Variance. Standard Deviation and Coefficient of Variation • 

Summer 2003 

The expression for variance, 0
2

, Eq. (13), is given by 
Blakebrough[1l and Fredrickson. [5l The variance is a measure 
of the variability, spread, or dispersion of the values of a ran­
dom variable. Naturally, the larger the value of the variance, 
the greater the dispersion of the values of the random vari­
able about their mean. 

The standard deviation, a , is obviously the square root of 
the variance, 02. The value of 0(1:) as given by Eq. (15) 
varies from Oat 'C =0, reaches its maximum at 'C 

112
, or T=£n2, 

where m(i)=l/2, and eventually vanishes as 1: • 00 , as ex­
pected. This trend of the 0(1:) 's variation in terms of 
m( 1:) ± a( 1:)/~ for three values of n

0 
is also illustrated in Fig­

ures 3 and 4. Note that in these figures, especially in the 
latter, the deviations of the majority, if not all, of the avail­
able experimental data are substantially more pronounced than 
those of the deviations predicted by the model in view of the 
reported n

0 
between 7.5 x 106 and 19 x 106 in obtaining the 

experimental data. [19l This is almost always the case: the over­
all deviations of the experimental data include not only those 
attributable to the internal or characteristic noises of the pro­
cess as predicted by the stochastic model, but also to the exter­
nal noises due to instrumental deficiencies and errors that can 
never be totally eliminated. 

The coefficient of variation, CV( 1:), is defined to provide a 
meaningful relative measure of the variability, spread, or dis­
persion of the values of a random variable about their mean. 
Note that CV(i) expresses the random variable's dispersion 
as a fraction of the mean, or frequently, as a percentage. 

For the thermal disinfection under consideration, CV(i), 
specifically, the relative variation of size of the cell popula­
tion about its mean, at any dimensionless time 'C is inversely 
proportional to the square root of the initial cell population 
size,~, as indicated by Eq. (17) or (17a). By evaluating CV( 1:) 
for various values of~, m( 1:), and their combinations, it can 
be readily shown that 

- At any 'C, the larger the n
0

, the smaller the CV( 1:), or 
the relative extent of the fluctuations 

- For any n
0

, CV( 1:) is initially zero and increases 
monotonically with 'C, and the smaller the m( 1:), the 
larger the CV(i) 

- For any m( 1:), CV( 1:) increases monotonically with the 
increase in n

0 
and asymptotically approaches a constant 

value, and the smaller the n
0

, the smaller the CV( 1:) . 

Skewness • Skewness y(t), as defined by Eq. (18), mea­
sures the extent of asymmetry of the distribution of random 
variable N(t) relative to its extent of deviation or dispersion. 
Thus, it is indeed a meaningful measure of asymmetry; nev­
ertheless, y( t) depends on parameter ~-

For the thermal disinfection under consideration, y( 1:) has 
been evaluated according to Eq. (21) for n

0 
of 10, 100, and 

100,000; the values of y( 1:) obtained are illustrated in Figure 
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5. The configurations of the resultant curves can 
be discerned at least qualitatively from that of the 
probability distribution of N(t) presented in Figure 
2; it is binomialin nature. Note that when 'C is nearly 
0, N( 'C) can assume only those values immediately 
to the left of I\; thus, its distribution is highly skewed 
to the left and consequently, gives rise to y( 1:) with 
an appreciable negative value. The opposite is the 
case as 1: • 00 • Naturally, in between these two ex­
tremes, y(i) approaches from either direction to 0, 
which is the value of y(i) for the normal distribu­
tion, at T=T1;2 =£n2. 

Kurtosis • Kurtosis k(t), as defined by Eq. (22), 
measures the degree of peakedness of the distribu­
tion of random variable N(t) relative to its extent of 
deviation or dispersion. Thus, it is indeed a mean­
ingful measure of peakedness; nevertheless, as for 
y(t), k(t) depends on parameter I\· 

For the thermal disinfection under consideration, 
the values of k(i) have been computed by Eq. (25) 
for n

0 
of 10, 100, and 100,000 and plotted in Figure 

6. Similar to y(i) presented in Figure 5, the con­
figuration of the resultant curves can be readily in­
terpreted in the light of Figure 2. When 'C is nearly 
0, N( 'C) can assume only those values in the imme­
diate vicinity of I\, and thus its distribution is highly 
peaked, giving rise to k( 1:) with a large positive 
value; the same is the case at 1: • 00 when the values 
ofN( 'C) are nearly 0. In between these two extremes, 
k( 1:) approaches from either direction to 3, which is 
the value of k( 1:) for the normal distribution, at 
T=T1;2 =£n2. 

CONCLUSIONS 

A stochastic model for the thermal death kinetics 
of a cell population as a pure-death process has been 
derived based on the first-order rate law. The solu­
tion of the governing differential equation of the 
model, termed the master equation, yields the prob­
ability distribution of the number concentration ( den­
sity) of live cells during disinfection, which is re­
garded as the random variable of the process; the 
resultant distribution is the binomial distribution 
whose two parameters are the number of cells ini­
tially alive, which will eventually die, and the prob­
ability of an individual cell being alive, expressed 
as the exponential decay function. In addition to the 
mean of live cells, various higher moments about 
the mean have been derived to characterize this dis­
tribution. These higher moments include variance 
(second moment about the mean), skewness (third 
moment about the mean over the third power of the 
standard deviation), and kurtosis (fourth moment 
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about the mean over the fourth power of the standard deviation). Only the 
expressions for the mean and variance are available in one or more of the 
existing major textbooks in biochemical engineering. Naturally, augment­
ing them with the skewness and kurtosis would better characterize the 
distribution, thereby deepening the understanding of stochastic, i.e., tem­
porally varying probabilistic, nature of thermal death of cells during their 
disinfection. 

Thermal disinfection has long been regarded as a suitable or useful 
instructional example for illustrating stochastic analysis and modeling of 
biochemical phenomena or processes, the majority of which deal with 
discrete mesoscopic entities that are neither microscopic nor macroscopic. 
To enhance its usefulness, the example has been substantially elaborated 
in the current exposition. As indicated at the outset of this article, various 
chemical engineering courses are richly populated with subjects involv­
ing mesoscopic entities, such as bubbles, droplets, and particles includ­
ing nanoparticles. Thus, these subjects would be suitable examples for 
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introducing the application of stochastic processes in these 
courses, similar to the thermal destruction of microorganisms 
for biochemical engineering. 
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NOMENCLATURE 
E[N(t)] mean, expected value, or the first moment of the 

random variable, N(t) 
E[N2(t)] second moment of the random variable, N(t) 
E[N3(t)] third moment of the random variable, N(t) 
E[N4(t)] fourth moment of the random variable, N(t) 

k proportionality constant in the intensity of death, Eq. 
(2), min·1 

k(t) kurtosis of the random variable, N(t) 
N(t) random variable 
m(t) E[N(t)] 

n realization of the random variable, N(t) 
1\i number of live cells at t = 0 

p/t) probability that the process will be in state n at time t 
t time 

y(t) skewness of the random variable, N(t) 

µn intensity of death for the pure-death process in state n 

0
2 (t) Var[N(t)] 

0(t) standard deviation of the random variable, N(t), as 

defined in Eq. (14) 
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