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A fundamental tenet in (linear) regression analysis is 
that errors associated with a model must be random 
and independent from observation to observation in 

an experiment, with expectation (or mean value) zero. Vari­
ous aspects of residual behavior are routinely discussed in 
modem texts on probability and statistics. The distribution 
of 

ek =yk -h; k=l, ... ,n 

should show a random scatter when plotted against 

as abscissa. 

If the statistical experiment involves observations in a time 
sequence, and the error at time instant~ is influenced by the 
error at the immediately previous time instant ti' the result­
ing "influential carryover"[1

,
2lviolates the error-independence 

criterion. The errors may be negatively or positively corre­
lated. 

The technique introduced by Durbin and Watson[3l more 
than fifty years ago is a popular and straightforward test for 
the existence of autocorrelation in time-series analysis (e.g., 
in forecasting). Only a small number of textbooks on prob­
ability and statistics intended for engineering and natural sci­
ences treats this subject matter, however. 

The purpose of this article is to demonstrate the applica­
tion of the Durbin-Watson (DW) technique to regression 
analysis concerning chemical engineering processes where 
the "regressor"[4l sequence occurs as a time series. Regres­
sion problems of this kind appear routinely in reaction kinet­
ics/chemical reaction engineering, applied transport phenom­
ena, process control, and engineering economics and plant 
design, thus touching all major domains of the undergradu­
ate curriculum. 

The DW technique is illustrated by two examples. The first 
is related to decisions concerning the order of a chemical re­
action. The second illustrates its usefulness in determining if 
a regression model is statistically admissible, and as such, is 
of major interest to chemical (and other) engineers. 

BRIEF THEORY 

Given the general first-order autoregressive process[5l 

p-1 

Yk = ~o + L~kxk,i +ek 

i=l 

k= l, ... ,n (1) 

where the errors are assumed to obey the first-order 
autocorrelation 

(2) 

with IPI < 1, and independent random~ belonging to the nor­
mal distribution with zero mean and variance p2

• The regres­
sor set {xn} contains observations obtained at consecutive 
time instants tl' t

2
, ••• , tn. In the case of correlated errors, the 

variance of each error term is given by 

2 0
2 

CT (ek) = --2 1-p 
(3) 
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The purpose of this article is to demonstrate the application of the Durbin-Watson 
(DW) technique to regression analysis concerning chemical engineering 

processes where the "regressor"141 sequence occurs as a time series. 

and the covariance of adjacent errors is 

cr
2

(ek;ek-1) = pa
2

(ek) (4) 

To test the null hypothesis H
0 

: p = 0 against an appropriate 
alternative hypothesis HP the Durbin-Watson statistic 

n 

L.,(ek -ek-1)2 

D = -"'k~=2=--------
n 

I,e~ 
k=l 

SSED 

SSE 
(5) 

is computed and compared to upper (~) and lower (dL) 
limits of D, as a function of observation size, in critical 
tables. [3•

5
•
6l The decision scheme is given in Table 1. 

The D-statistic is related to the Lag 1 autocorrelation[5.7l 

coefficient of residuals defined as[5l 

(6) 

by the simple relationship 

D = 2(1-r1 ) (7) 

which is particularly useful for n < 15 since critical tables 
do not extend outside the 15 :::; n:::; 100 range. If the in­
equality lr

1
1 > 2/✓n stands, the independence of errors is in 

serious doubt. The size of observations in the first example is 
sufficiently large to use critical tables, whereas tables cannot 

TABLE 1 
Decision Schemes in the DW Statistical Test 

Note: Rejection ofH
0 

is a stastistically stronger result 

than failure to reject it. 

Test Hypotheses Criterion 

H, : p = O; H, : p > 0 D < dL 
D>du 

H,: p = O; H,: p < 0 (4-D) < dL 
(4- D) > du 
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dL~D~du 
dL ~ ( 4 - D) ~ du 

Decision 

Reject H
0 

in favor ofH
1 

Fail to reject H
0 

Reject H
0 

in favor ofH
1 

Fail to reject H
0 

Inconclusive 
Inconclusive 

be used in the second example. 

EXAMPLE 1 

Kinetics of the Bromination of Metaxylene 

The rate equation written in terms of bromine concentration 

(8) 

has the rate constant k"" 0.1 (dm3/mol) 112 miu-1 and apparent 
order m = 1.5 at 17 °C_[sJ As can be seen from Table 2 (next 
page), the errors do not appear to be correlated, since the 
OW-statistic D is larger than ~ values at levels of signifi­
cance a.. 

If we assume for the sake of argument, however, that the 
decomposition is first order (m = 1), the test results depend 
on the selected level of significance. Since R2, Rad/, and the 
residual distributions (not shown) are not appreciably differ­
ent, the model carrying m = 1.5 is a better fit. 

This conclusion is also supported by the 95% confidence 
intervals for the true regression parameter b

0 
: (-0.6494; 

0.3079) when m = 1.5 and (-3.6478; -2.01306) when m = l; 
in the second case, the correct value of zero does not even 
fall into the interval 

What happens if the decomposition is assumed to be of 
zero order? With m = 0 in Eq. (8), the bromine concentration 
would be a linear function of time. The c = ~o + ~/+error 
model would have the sample regression parameters 
b

0 
= 0.25849 and b

1 
= -0.004119, with R 2 = 0.857 and 

s/ = 0.00724 (including the t = 63.00; c = 0.0482 observation 
pair, lost by the rate-averaging process discussed in Ref. 8). 
Since SSE = 0.03558 and SSED = 0.02419, however, the 
DW statistic D ""0.7 is less than the~ values shown in Table 
2, indicating a positive correlation between errors. The residual 
distribution also being parabolic (i.e., definitely non-random), 
the postulation of zero-order kinetics would be statistically most 
questionable, apart from its physical improbability. 

EXAMPLE2 

Effect of Temperature/Humidity Index 
on the Level of Pollution 

The level of pollution as a function of the temperature/hu­
midity index, recorded on ten consecutive days at a certain 
location[9l are shown in Table 3. The problem assignment in 
Ref. 9 is to determine if the data are suitable for a linear re-

23 



gression analysis. 

Table 4 illustrates that increasing the degree of the poly­
nomial is not particularly effective, inasmuch as the ad­
justed R2 values indicate that even at best, only about 65% 
of the variations in the pollution index are explained by 
variations in the temperature/humidity index. The error 
variances are also very similar. 

The residual distribution in all three cases is reason­
ably random, and the numerical values of the Lag 1 
autocorrelation coefficient magnitude are well below the 
numerical value of 21✓ 10 = 0.632. The errors appear to 
be umelated. 

It is instructive to note that the power relationship Y = 
[\x/ would not yield a better fit with a nonlinear R2 = 
0.690 (linearization yields ln(b

0
) = -5.77981 and b

1 
= 

1.52312; the residual distribution is quasi-random). 

FURTHER COMMENTS ON 
THE DURBIN-WATSON TECHNIQUE 

If the OW-statistic falls into the inconclusiveness zone, "reme­
dial measures" for autocorrelation may be applied: addition of in­
dependent variables, transformation of variables, the Cochrane­
Orcutt procedure, and the Hildreth-Lu procedure. The discussion 
of these techniques is beyond the scope of this paper and may be 

TABLE 3 
Pollution as Function of Temperature/Humidity Index 
x - temperature/humidity index; Y - coded pollution level 

Dayk 1 2 3 4 5 6 7 8 9 10 

x°F 77 95 30 45 85 50 65 60 63 82 

y 1.5 4.0 0.5 1.4 2.0 0.8 2.5 2.0 1.7 2.8 

TABLE 2 
Application ofDWT to the Kinetics ofMetaxylene Bromination. 

Experimental data are taken from Ref 8, Table 3.I. l. 

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

~ 0 2.25 4.50 6.33 8.00 10.25 12.00 13.50 15.60 17.85 19.60 27.00 30.00 38.00 41.00 

~ 0.3150 0.2812 0.2555 0.2353 0.2153 0.1980 0.1852 0.1713 0.1566 0.1465 0.1295 0.1107 0.0942 0.0799 0.0736 

yk 16.44 13.56 11.48 11.68 9.11 8.00 7.73 7.71 5.87 4.06 3.64 3.23 2.79 2.10 155 

~: observation time (min) 
xk: mean bromine concentration (mol/dm3) 
yk: mean rate of reaction - 103 ~c/~t (mol/dm3 min) 

SSED 

SSE 

D 

Decision on errors 

Y~~0 + ~/5 + error 

-0.170746 

94.494843 

0.987 

0.986 

0.3054 

8.54756 

4.88721 

1.749 

Not correlated at 
CFO.OJ; 0.025; 0.05 

Y ~ ~o + ~t +error 

-2.830640 

57.830640 

0.977 

0.976 

0.5305 

9.86520 

8.48330 

1162 

a~ 0.01: Not correlated 
a~0.025: No conclusions 

a~0.05: Borderline positive correlation 

Critical values of the DW statistic at n ~ J 9f3•5,6l 

a 

0.05 

0.025 

0.01 

dL 

1.16 

1.03 

0.90 

du 

1.39 

1.26 

1.12 

16 17 18 

45.00 47.00 57.00 

0.0692 0.0615 0.0518 

135 1.25 118 
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found elsewhereY0l 

The DW technique may not indicate autocorrelated errors 
associated with a second-order autoregressive pattern 

(9) 

and hence it is not robust against incorrect model specifica­
tions. 

Alternative tests of autocorrelation include the Theil-Nagar 
procedure[10.1 1J and the Olmstead-Tukey, Mann-Kendall, 
Hotelling-Pabst, and von Neumann tests summarized briefly 
by Powell.[6l To the author's knowledge, the Durbin-Watson 
technique is more widely used. 

CONCLUSIONS 

Owing to the relative ease of its use, the inclusion of the 
Durbin-Watson technique in a probability and statistics course 
is well advised for the undergraduate chemical engineering 
curriculum. It is somewhat surprising that the technique is 
treated only by a small number of engineering textbooks, no­
tably the ones cited in this paper. Routine teaching of the 
technique would further emphasize for students the impor­
tance of error structure analysis and help counteract their of­
ten-demonstrated inclination to assign inflated significance 
to the R2 parameter. 
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NOMENCLATURE 

C 

sample regression parameters, i.e., least-squares 
estimators of true regression parameters i3i, i = 1, ... ,p 
concentration 

TABLE 4 
Application ofDWT to the Pollution Problem of Example 2. 

Data are taken from Ref 9 

Simple linear nwdel Quadratic nwdel Cubic model 

b, -0.80347 0.36495 -6.62620 

b, 0.041771 0.001023 0.395176 

b, 3.2274 X 104 -6.470 X 10·3 

bs 3.644 X 10·5 

R' 0.684 0.700 0.766 

R""/ 0.644 0.614 0.649 

s/ 0.364 0.395 0.359 

SSED 6.4739 6.0833 3.7614 

SSE 2.9144 2.7654 2.1568 

D 2.221 2.200 1.744 

lr,I 0.110 0.100 0.128 
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Durbin-Watson statistic (Eq. 5) 
lower and upper level bounds, respectively, in critical 
tables of the Durbin-Watson statistic 

e 

k 
m 
n 

p 

R2 

u 
X 

y 

error ( or residual), defined as the difference between 
the observed and regressed value of the dependent 
variable 
rate constant (Eq. 8) 
reaction order (Eq. 8) 
length of the time series and size of the observation 
set 
size of the regression polynomial (simple linear: 2; 
quadratic: 3, etc.) 
coefficient of determination; R ct 

2 its adjusted value, 
defined as 1 - [SSE/(n-p )]/[SST/(n-1 )] 
Lag 1 autocorrelation coefficient (Eq. 6) 
sample error variance, defined as SSE/(n-p) 
time; ~ the k-th instant in the time series 
random variable (Eq. 2) 
independent variable (regressor) 

dependent variable; Y regressed dependent variable 

Greek Symbols 
a level of significance in hypothesis testing 
i3i true population regression parameters, k = l, ... ,p 
u 2 true (population) variance 

p true (population) correlation coefficient 

Special Symbols 
SSE sum of the squared errors (Eq. 5) 

SSED sum of the squared error differences (Eq. 5) 
SST total sum of squares in regression theory 
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