
~S=i classroom ) ---1111111-----------

USING A READILY AVAILABLE 
COMMERCIAL SPREADSHEET 

To Teach a Graduate Course on 
Chemical Process Simulation 

MATTHEW A CLARKE AND CARLOS GIRALDO 

University of Calgary • Calgary, Alberta, Canada T2N 1 N4 

For chemical engineering graduates, being able to use 
a chemical process simulator is considered as a sine 
qua non of the discipline, yet relatively few students 

have a direct appreciation of what is involved in constructing 
a chemical process simulator. The complex chemical process 
simulators, such as ASPEN and HYSYS, that are almost 
universally known to chemical engineers, have significantly 
streamlined the task of chemical process design. Efficient 
these simulators are, however, they also mask myriad complex 
calculations. Thus one of the end results is that users of these 
software packages may not have a full appreciation of how 
elegantly and succinctly process simulators intertwine almost 
all aspects of chemical engineering from thermodynamics to 
equipment design to cost estimation. 

An ancient Chinese proverb says, "Tell me and I'll forget; 
show me and I may remember; involve me and I'll under­
stand," and it was with this mind-set that Professor P.R. 
Bishnoi ( one of the founders of Hyprotech) developed, in the 
mid-1980s, a post-graduate course in process simulation in 
which students would enhance their understanding of process 
simulation by constructing all, or part, of a chemical process 
simulator. In the initial years of its existence, individual 
students constructed relatively simple simulators, using FOR­
TRAN 77, to solve a specific problem rather than to serve as 
a general process simulator. In the 1990s, there was a shift 
from FORTRAN 77, a procedure-oriented language, to C and 
then finally to C++, which is an object-oriented language. The 
use of an object-oriented language allowed for the creation 

160 

of re-usable blocks of code that could be connected in a near 
infinite number of configurations, thereby greatly extend­
ing the generality of the students' simulator. As the scope 
of the term project became more complex over the years, it 
necessitated a migration from individual term projects to a 
format in which all of the class member would contribute to 
a single final project. To the best of the author's knowledge, 
this course is unique and is not offered, in this format, at any 
other institution. 

Following Professor Bishnoi's retirement, this course 
took an extended hiatus from the list of courses available to 
graduate students in Chemical and Petroleum Engineering at 

Matthew Clarke is an assistant professor 
of Chemical and Petroleum Engineering at 
the University of Calgary. He has a Ph.D. 
in chemical engineering from the University 
of Calgary. His research interests are in 
hydrates and biofuels. 

Carlos Giraldo 
is pursuing his 
Ph.D. in chemi­
cal engineering 
atthe University 
of Calgary. He graduated from the Na­
tional University of Colombia in 2001 with 
a degree in chemical engineering. Subse­
quently, he worked as a process engineer 
in Bogota, Colombia. 

© Copyright ChE Division of ASEE 2009 

Chemical Engineering Education 



the University of Calgary. At the time of its resurrection, in 
2007, much had changed in the world of chemical engineer­
ing education and computing, particularly with respect to 
students' familiarity with structured programming languages. 
Thus, the decision was made to do the project with a more 
familiar platform: that of MS Excel with VBA. While it is not 
possible to construct a stand-alone simulator using Microsoft 
Excel, it was an attractive choice because it provides a conve­
nient platform for entering and displaying data and because 
it is almost universally known to post-graduate students in 
chemical engineering. The use of spreadsheets for various 
chemical engineering calculations is not new and has been 
documented in many sourcesY-5l What makes this course 
unique is that Excel is being used to create an "all-purpose" 
simulator, with a built-in graphical user interface (GUl), for 
solving simultaneous heat and energy balances. 

Additionally, unlike traditional graduate courses in chemi­
cal engineering, this course is distinctive in that it is a group 
effort, rather than a solo pursuit. Because of the sheer size of 
the project, itis not feasible to expect each student to construct 
his or her own simulator in a one-semester course. Thus, each 
student is given a task and, toward the end of the semester, the 
pieces are fit together to produce a working simulator. 

Because of the unique nature of this course, this paper is 
being written to evaluate the delivery format of the course 
and the effectiveness of teaching chemical process simulation 
in a "hands-on" format. 

COURSE DESCRIPTION AND DELIVERY FORMAT 

The idea of learning by doing is not a new one; the great 
Italian renaissance polymath Leonardo Da Vinci once said 
"Knowing is not enough; we must apply. Being willing is 
not enough. We must do." The objective of this course is to 
give to the students hands-on experience at developing a gen­
eral-purpose, steady-state, chemical process simulator and to 
understand the various types of computations involved in such 
a simulator. In this respect, it's as much a course in software 
design as it is a course in chemical engineering. 

In the university's calendar, the course was allocated three 
hours per week forlectures, of which half was used forlectur­
ing and presenting new material and the other half was used 
for a weekly seminar in which students would individually 
discuss their previous week's progress and their goals for the 
following week. This seminar was particularly important since 
two of the students were employed full time. The material 
covered in the lectures was, for the most part, not entirely 
new to the students and consisted of a review of basic heat 
and energy balances and unit operations, selected topics from 
numerical methods and computational thermodynamics, and 
sequencing. Sequencing, which will be discussed in more de­
tail later, was the only section that was completely new to the 
students. At several points throughout the semester, an invited 
speaker who worked in the chemical process simulation field 

Vol. 43, No. 2, Spring 2009 

gave lectures on object-oriented programming fundamentals 
and on how to put all of the components together to form the 
final product. 

Because the course was primarily a group effort, evaluation 
of the students' progress was not a trivial task. As alluded to 
earlier, each student was given a specific task to work on and 
then at the end of the semester, the pieces were assembled into 
their final magnum opus. Thus, for roughly the first two-thirds 
of the semester, each student worked independent of the others 
and it was felt that the appropriate method for midterm evalua­
tion was a combination of a written report and an oral exam for 
each student. These components were each worth 15% of the 
final grade. In the latter portion of the semester, the students 
were collaborating much more closely than in the early part 
of the semester and thus the term-end evaluation consisted 
of a final oral presentation and exam for each student, worth 
25% of their grade, plus a single final report submitted by all 
group members, worth 45% of the final grade. 

WHAT THE STUDENTS THOUGHT THEY 
WERE TAKING 

The aforementioned course was first offered to graduate stu­
dents more than 20 years ago. Due to the original instructor's 
retirement, however, the course had not been offered in almost 
five years. Thus, students were not able to learn about the 
course by word of mouth and the only information available 
to the students regarding the course came from the university's 
catalog description, which, at the time read 

"Chemical Process Simulation: Synthesis. Analysis and 
screening of process alternatives. Steady state simulation. 
Material and energy balances for systems of process units. 
Modular approach. Heat exchanger network and separation 
processes." 

When this course description was first conceived, two 
decades ago, it quite adequately conveyed what the course 
was about. Most of the 12 students that arrived to class on 
the first day of the semester were expecting something com­
pletely different, however. When I asked the students what 
they were hoping to achieve in taking this course, responses 
ranged from "HY SYS training" to "I need an easy course for 
my professional registration." When I handed out the course 
outline to the students, a great silence fell across the room 
and faces paled at the revelation that this was not a software 
training course, that this would not be an easy course, and 
that they would have to do the programming themselves. The 
end result was that the class size dropped from 12 to four by 
the second lecture. (It should be noted that, because of the 
necessary division of labor, four students is the minimum 
number necessary to run the course.) 

After re-examining the calendar description quoted 
above, I felt it could be written to better elucidate the 
course content. For the upcoming year, the calendar entry 
has been changed to make it explicitly clear that it is an 

161 



object-oriented programming course. It now reads: 

"Chemical Process Simulation: Object-oriented program­
ming applied to the design of a steady state chemical pro­
cess simulator via the sequential modular approach and by 
the equation-based approach. Material and energy balances 
for systems of process units." 

It was felt the above wording would not only inform stu­
dents that it is not a software training course, but it would also 
inform other students that it is a programming course. 

WHAT SKILLS THE STUDENTS HAD TO LEARN 

The students emolled in the course had a di verse academic 
background and each brought certain strengths to the project. 
As previously mentioned the lecture content included topics 
from basic chemical engineering, numerical methods, thermo­
dynamics, and sequencing. Thankfully, all students were well 
versed in the basics of chemical engineering and numerical 
methods and thus it was not necessary to devote significant 
lecture time to these topics. 

Computational thermodynamics, on the other hand, was a 
subject with which the students had little direct experience. 
Thus, this section included a review of vapor/liquid equilib­
rium, equations of state, activity coefficient models, bubble 
point and dew point calculations for nonideal systems, iso­
thermal/isobaric flash calculations, isoenthalpic/isobaric flash 
calculations, isentropic/isobaric flash calculations, and Gibbs 
free energy minimisation for reacting systems. 

Sequencing, as mentioned previously, was the lone topic 
that was completely new to the students and the lectures were 
devoted to presenting various algorithms for determining in 
which order the unit operations should be solved. 

The biggest deficiency in the students' knowledge base, 
however, was not in any of the chemical engineering topics; it 
was in object-oriented programming. Maixnerl6l observed that 
after taking basic engineering computing, students "usually 
allow their programming skills to stagnate." While some of the 
students were out of practice with respect to programming, it 
was found that for 100% of the students, their knowledge was 
limited to procedure-oriented programming. The advantage 
of an object-oriented approach is the ability to solve and test 
individual modules together and the ease with which modules 
can be combined, solved, analyzed, and swappedPl 

After the semester, the three remaining students were asked, 
among other things, what skills they had to learn and their 
responses are listed below: 

162 

• "Thermodynamics, unit operations, programming, logi­
cal thinking, teamwork." 

• "During the course, we learned some concepts of OOP, 
thermodynamics, simulation solver other than extensive 
use of computer programming." 

• "Teamwork." 

ORGANIZATION OF THE SIMULATOR 

The construction of a steady state, sequential, modular 
simulator is a daunting task when first approached by students 
and it's not feasible for individual students to construct their 
own simulator in a one-semester course. Thus, the project was 
done as a group project in which each student was assigned 
a part of the object-oriented simulator to construct. Initially, 
one student was assigned to create a GUI and component da­
tabase, one student was assigned to create the thermodynamic 
routines, one person was responsible for the unit operations, 
and the remaining member was responsible for sequencing. 
Midway through the semester, the student in charge of the 
thermodynamics routines withdrew from the class and these 
duties were subsequently divided among the remaining group 
members. Fortunately, one of the remaining students had 
previous exposure to computational thermodynamics. 

The program is composed of a GUI, information sheets, 
thermodynamic routines, unit operations routines, and the 
sorting/tearing algorithm-all of which interact with each 
other, as shown in Figure 1. In the ensuing subsections, a brief 
description of each section of the program is provided. 

Information Sheets 

The information sheets, which are merely Excel worksheets, 
provide a platform for entering and displaying data and for 
storing thermodynamic component data. Data is read from 
and written to the appropriate worksheet using the built-in 
cells() function. 

GUI and Component Database 

The graphical user interface was constructed in Excel using 
the built-in VBA editor. Once the equation of state and the 
components for the new project have been selected, the pro­
gram closes all dialogs and takes the user to the main interface 
window, where the Process Flow Diagram is built. 

On this page, the program shows the core of the graphical 
user interface: the "Unit Operations" tool bar. This tool bar 
is divided in five main sections: adding new unit operations, 

GU I 

D 
INFORMATION SHEETS 

I THERMODYNAMICS II UNIT OPERATIONS 11 SORTING/TEARING I 

PFD SOLVER 

Figure 1. Block diagram for the simulator. 

Chemical Engineering Education 



Feed Prod 5eJ)¥atcr Heater Cooler He& Exchanger PuTip CClnl)l'essor Expander V(}Ne Re&etor fixer Splitter Recycle ~stree.m EditM&stream Deletel.W)p Ri.nSin 

separator_ 1 
prod_3 

clr_1 

ht-xchngr _ 1 vatve_1 

prod_5 

63 Microsoft Excel process_s1mu1ation_rev_feb28 r;J~r8] 
~ El< ~dit l'.i<W -· ,..,,., 

l°"' I,,~ - tl<I> Type:aqursbonfol~ • - 6 X 

Dr.H18ti al9.::>- :I,~ ft· s1 • · ii. ,: · ell ti fl ~~100% • 11J . ~!>!>~-<a$ <1> Q !j:jl'j i;;;J@ . Off 

w • tO B I l! 11e•S11!!a $ € % . '.&I .'JI \F' \F' - · "- · ,:i,. - . ~cli'Q ~liei....Jr• [!i@ap!i!j ~A~ ~ -
E9 f,, 

8 C D E F G H K M N 0 p a R 
.!a STREAM STREAM STREAM STREAM STREAM STREAM STREAM 

S1 S2 SJ S5 S6 S7 S4 

f 
+ + + 

t- + t + + 
+ t- + t- + t + + 
+ t- + t- + t- + 
+ t + + 

t::::=1 + + + 
+ 

2100000 2100000 2100000 2099000 2100000 2102000 + 2100000 
273 273 273 273 

+ 1000 773 8285 226 1715 1000 1000 773 8285 1000 
0 767096 1 0 + 1 + + 

1000 1000 1000 + + 
+ + t- + 

28 04 243801 40 56207 28 04 28 04 24380 1 28 04 
+ t- + 

+ + + 

055 0 68049 0103538 055 055 0 68049 
+ 

055 
+ + 

0 04 0 040441 0.03849 0 04 0 04 0 040441 0 04 
04 0 267451 0 853506 04 04 0.267451 + 04 

00 1 00 11618 0 004466 001 00 1 0011618 
+ 

001 
+ + 

0 685985 0 68049 0 68049 + + 

0 040491 0 040441 0 04044 1 + + + 

0 261881 0 267451 + 0 267451 + t + t- + 

0 011643 00 11618 0 011618 + t + + 
+ + t + + 

0102117 0 103538 t + 

0 038384 0 03849 + + t 
0 854911 0 853506 + t 
0 004588 0 004466 

t + 
+ t + 

t- + J, ~L 
C::-:.aw • r. """"'- ' ' , • O~,tlt)ltil.:I "- ·.t:.- ,:i,. -: ;:;:=; • ~ -

Vol. 43, No. 2, Spring 2009 

Figure 2. 
Screen 
capture of a 
typical flow 
diagram. 

Figure 3. 
Screen cap-
ture of the 
"Streams" 
worksheet. 

163 



adding a material stream, editing a material stream, deleting 
a unit operation, and running the simulation. 

Thermodynamics 

Thermodynamic calculations represent the basis of the sim­
ulator, since all the unit operations are assumed to reach the 
equilibrium. To develop the current simulator, two equations 
of state have been selected: the Soave-Redlich-Kwong (SRK) 
equation of state[8l and the Peng Robinson (PR) equation of 
state. [9l As part of the process simulator, we are generating the 
value of thermodynamic properties (enthalpy and entropy), 
thus, the designation of a reference state becomes essential. 
For this simulator, the reference state that was chosen was an 
ideal gas at 273.15 Kand 1 Pa. 

The thermodynamic routines provide a necessary support 
for the unit operations in that they calculate necessary outlet 
conditions such as temperature, pressure, and/or composition. 
Depending upon the specific unit operation, these values are 
calculated with the aid of a constant-temperature/constant-pres­
sure flash routine, a constant-enthalpy/ constant-pressure flash 
or a constant-entropy/constant-pressure flash. The values of 
the thermodynamics quantities, such as entropy and enthalpy, 
are calculated by using the appropriate departure function[lOJ 
in conjunction with an equation of state. In addition, a Gibbs 
free energy minimisation routine was implemented to support 
the reactor unit operation. The algorithms for each of these 
routines are available in the open literature.[10-12i 

Unit Operations 

To code the unit operations, an object-oriented progrannning 
philosophy was adopted. For this section it is important to 
introduce some related terminology, mainly the object, class, 
properties, and method. An object is defined as a program­
mable entity with specific characteristics and feautures,l13l a 
class is what defines the object and serves as the template or 
blueprint for all the objects created from that class; any of 
the object's particular features, including properties, methods, 
and events, are handled by the class moduleY3l Properties 
are all the characteristics and features of the object without 
executing any action, and method is an entity that provides 
the actions supported by the objects created from the classY3l 

Methods are defined as the abilities, or actions, that the object 
can carry out. [l3l 

Basically, a module class was created for every single unit 
operation; this class contains the most important properties 
and methods. In addition, modules were included to collect 
the inputs from the interface, which become the properties of 
the class and present the results again on the interface. Unit 
operations that were included in the project were separators, 
valves, pumps, compressors, expanders, heaters, coolers, 
heat exchangers, mixers, splitters, recycle loops, and a 
Gibbs free energy minimization reactor. The details of the 
individual unit operations are available in any standard 
chemical engineering textbookY4l 

164 

Sequencing 

Sequencing is a term that essentially refers to the process 
of figuring out the order in which each of the unit operations 
should be solved. The sequential modular approach is the 
most popular approach and there are a number of commercial 
simulators that use this solution methodology. "Sequential 
modular" simply means that calculations start with known 
feeds, and continue on a unit-by-unit basis until all unit op­
erations in the flow sheet are calculated. [l 5J 

In sequential modular approach, the material balances for 
an entire process are solved one module (process block) at a 
time. For sequential modular material balance calculations, 
the output streams can be calculated if the input streams and 
the module parameters are known. 

VALIDATION OF THE NEW SIMULATOR 

A case study was initiated to study how the new Process 
Simulator compares with the popular commercial simulator, 
Aspen HYSYS. The simple case illustrated the capability of 
the new Process Simulator for performing reliable chemical 
process calculations for the Linde Process. Methane is usually 
liquefied in a Linde process. Initially, the vapor is compressed 
to 6MPa and cooled at 300K. Subsenquently the vapor passes 
through a heat exchanger before reducing its pressure (to 
O.lMPa) through a valve. The unliquefied fraction leaves 
the separator at the saturation point and passes through the 
heat exchanger exiting at the end at 295K. A screen capture 
of the flow diagram and the constructed worksheet for the 
process used in the case study is presented in Figures 2 and 
3 (previous page). 

The components that were present in the case study were 
methane, ethane, propane, n-butane, and carbon dioxide.The 
fluid properties were calculated with the PR equation of state. 
It was found that all of the stream compositions, temperatures, 
and pressures as calculated by the new simulator were within 
1.5% of the values calculated by the commercial simulator. 

EVALUATION OF THE COURSE FROM A 
STUDENT'S POINT OF VIEW 

As previously mentioned, at the conclusion of the course, 
the students were asked for their feedback. In addition, one 
student (who is the second author on this paper) provided a 
detailed evaluation of the course. The following paragraphs 
are his evaluation of the course: 

"The construction of a steady state, sequential modular 
simulator represented an immense challenge for all the 
members of the group since none of us had done anything 
similar in previous courses. The experience acquired until 
that moment with programming languages was limited to 
very "simple" algorithms dedicated for particular cases. 
Thus, when the distribution of the work was assigned by the 
professor, a sensation of confusion came up in the group 
because nobody was really sure about how to tackle the 

Chemical Engineering Education 



problem. Since the beginning of the semester, this course 
was different from the ones a regular graduate student usu­
ally takes, where the professors impart lots of information 
in the lectures. In this case, the classes were divided in two 
sessions per week; one of them was a lecture reviewing the 
basic tools that we required to complete this course suc­
cessfully and the second one was a group meeting to show 
everyone's progress, difficulties, and critical points, etc. 

During the first few weeks, the work was done independent­
ly; each of the members of the group wrote his or her own 
code without considering anybody else's problems or dif­
ficulties. Integration of the code was not the main concern 
in that particular moment. But, fortunately, the professor 
invited as guest lecturer a former student who had taken 
the course a few years ago; he basically commented about 
his experience in creating a process simulator. His main 
contributions to us were definitely the concept of working as 
a group and the fact that it is necessary to completely define 
the structure of the simulator on a piece of paper before 
any coding is done; in addition, he highlighted that the 
final product should be written with the mind-set that it is 
going to be used by an external user. From that moment on, 
teamwork began and it was established how the simulator 
was going to work and what kind of special characteristics 
should be included. For instance, definition of the variables 
that would be supplied by the user, the variables that would 
be public ( available for all the program) or private and 
the possible inconsistencies due to errors when wrong data 
were supplied by the users,final outputs, etc. 

Once the designing stage was finally done, all of the mem­
bers of the group had to recode a big part of our programs 
to make them suitable for the final integration. After hav­
ing succeeded on this, the skeleton of the whole simulator 
was ready. The following phase was to complete the rest of 
the thermodynamic algorithms and unit operations, which 
was a lot easier due to main parts being already done. 
The first simulator was really big and it was really difficult 
to handle, thus, some parts of the program were recoded 
once again to make them better. In this part of the work 
a very helpful support was provided from one student at 
U of C whose knowledge in Visual Basic for Applications 
was far beyond any of the other members of the group. 
His main contributions were the implementation of useful 
techniques and hints to reduce the number of lines in the 
program and increase the speed of processing. One of the 
most challenging parts was the debugging of the code; 
from our point of view the best way to debug any long 
program is by ensuring that every piece of code is working 
properly rather than to verify the whole program. It is also 
important to keep in mind that a minimum knowledge is 
required of programming, creation of algorithms, numeri­
cal methods focused on the solution of single and simulta­
neous systems of non-linear algebraic equations, sorting, 
matrixes, etc. But the most important thing is to always 
be motivated and be open to learning new concepts. At 
the end of the term, the group was really satisfied with the 
final product; since we were able to reproduce the results 
of commercial simulators by using simple programs." 

Vol. 43, No. 2, Spring 2009 

Additional comments by the other students are given 
below: 

Which parts were the most challenging? 

• "Finding the best way to represent the unit operations and 
connect the graphical part to the database in Excel. " 

• "The most challenging part was debugging. The algorithm 
initially written was not the best one. The program went 
very big and was just too big to handle." 

Problems to comment on for future students? 

• "Teamwork is a key component in this course." 

Which skills you got to the end of the course? 

• "Computer programming skills, basic structure of simula­
tor, simulation solver knowledge. Above all we learned 
how to put together a simulator." 

EVALUATION AND RECOMMENDATIONS 
FROM THE INSTRUCTOR'S POINT OF VIEW 

The structure and content of the course make it unique 
arnong graduate courses in chemical engineering at the Uni­
versity of Calgary and thus it presented many challenges to 
the instructor. As previously mentioned, this was the first time 
in almost five years that the course had been offered, and in 
spite of that fact, the overall sentiment of the instructor was 
that the course achieved its desired outcomes. 

Over the course of the semester, there were only two nega­
tive events to danipen evaluation of the course. The first was 
that, as previously stated, a large number of students enrolled 
believing the course would be a software-training course. It is 
also hypothesized that some students-who may have been 
keen prograrnmers -avoided the class for the sarne reason. 
Secondly, the number of students was below the optimal 
number for the course. When one of the students withdrew 
from the course, a tremendous burden was placed upon the 
remaining students. 

Conversely, many aspects of the course were extremely 
positive. The total project was divided into manageable parts 
and, at the end of the semester, each student was able to say 
that they had not only learned how to prograrn a part of the 
simulator, but they also benefitted from having to work in a 
tearn environment. The regular weekly debriefings not only 
allowed the students to receive weekly feedback from the 
instructor, but they also served to educate each group member 
as to what challenges the other members were facing with their 
prograrnming. Additionally, the use of Excel as the prograrn­
ming platform was advantageous. While Excel may not have 
all of the capabilities of high-level prograrnming language, 
such as the ability to create a stand-alone executable file, the 
fact that students had previous exposure to it and the fact that 
student access to Excel is practically universal made it the 
best choice for the course. 

165 



For any instructor that is contemplating offering a graduate 
course in simulation, I would make the following recom­
mendations: 

1. Ensure that the calendar description clearly conveys 
that it is a course in software design and not merely a 
software-training course. 

2. Advertise a detailed synopsis of the course well in ad­
vance of the beginning of the term. 

3. Stipulate a minimum of six students. This ensures that if 
one or two students withdraw partway through the term, 
the remaining students are not overly burdened. 

4. To attract and retain a larger number of students, include 
minimal hands-on work with a commercial simulator, 
perhaps as a means of illustrating lecture topics. 

5. Spend the majority of lecture time covering object-orient­
ed programming fundamentals, computational thermody­
namics, and sequencing. 

CONCLUSION 
A post-graduate course on chemical process simulation 

was offered in the Department of Chemical and Petroleum 
Engineering at the University of Calgary in which students 
were given the opportunity to construct a chemical process 
simulator as a group project. Microsoft Excel, along with its 
built-in Visual Basic for Applications (VBA) programming 
environment, was used to create a fully functioning modular 
chemical process simulator. An object-oriented approach 
was used to create and combine the necessary sections of the 
simulator; mainly the graphical user interface and component 
database, the thermodynamic routines, the unit operations, and 
the sequencing algorithms. The result is a fully functioning, 
steady state, chemical process simulator that is capable of 
matching the results of the far more expensive commercial 
simulator, as was seen with the validation study. Student feed­
back on the course indicated that the students learned a great 
deal with respect to both software design and to working in 
a team environment. From the instructor's point of view, the 

166 

course was successful in achieving its goals and recommenda­
tions for future offerings of the course were made. 

ACKNOWLEDGMENTS 
The authors would like to acknowledge Dr. Ryan Krenz 

from the Virtual Materials Group in Calgary, Alberta, for 
sharing his experiences in creating object oriented process 
simulation tools. 

REFERENCES 
1. Clarke, M.A., and PR. Bishnoi, "Development of an Implicit Least 

Squares Optimization Scheme for the Determination ofKihara Poten­
tial Parameters Using Gas Hydrate Equilibrium Data," Fluid Phase 
Equilibria, 211, 51 (2003) 

2. Lwin, Y., "Chemical Equilibrium by Gibbs Energy Minimization on 
Spreadsheets," International J. of Eng. Educ., 16, 335 (2000) 

3. Savage, PE., "Spreadsheets for Thermodynamics Instruction," Chem. 
Eng. Educ., 29(4), 262 (1995) 

4. Ravella, A., "Use a Spreadsheet for Preliminary Reactor Design," 
Chem. Eng. Progress, 89, 68 (1993) 

5. Bornt, B., "Spreadsheets for Heat Loss Rates and Temperatures," Chem. 
Eng., 102, 107 (1995) 

6. Maixner, M.R., "Design of a Waterjet-Propelled Barge: A First 
Computer Modeling Project," International J. of Eng. Educ., 21, 745 
(2005) 

7. Chen, J., and RA. Adomaitis, "An Object-Oriented Framework for 
Modular Chemical Process Simulation With Semiconductor Processing 
Applications," Comp. Chem. Eng., 30, 1354 (2006) 

8. Soave, G., "Equilibrium Constants from a Modified Redlich-Kwong 
Equation of State," Chem. Eng. Sci., 27, 1197 (1972) 

9. Peng, D., andD. Robinson, "ANewTwo-ConstantEquationofState," 
Ind. Eng. Chem. Fund., 15, 59 (1976) 

10. Elliot, R., and C. Lira, Introductory Chemical Engineering Thermo­
dynamics, Prentice Hall, Upper Saddle River, NJ (1999) 

11. Walas, S., Phase Equilibria in Chemical Engineering, Butterworth­
Heinemann, Newton, MA (1985) 

12. Tester, J.W, and M. Modell, Thermodynamics and its Applications, 
3rd Ed., Prentice Hall, Upper Saddle River, NJ (1997) 

13. Harrison, B.K., "Computational Inefficiencies in Sequential Modular 
Flowsheeting," Comp. Chem. Eng., 7, 637 (1992) 

14. Biegler, L.T., I.E. Grossman, andA.W Westerberg, Systematic Methods of 
Chemical Process Design, Prentice Hall, Upper Saddle River, NJ (1997) 

15. Norman, R.L., "A Matrix Method for Location of Cycles of a Directed 
Graph," AIChE J., 8, 450 (1965) 0 

Chemical Engineering Education 


