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Ultrafiltration for the concentration and purification of 
macromolecular solutions is an increasingly impor-
tant unit operation especially in the bioprocessing 

industries.[1] While it has traditionally formed only a minor 
part of many chemical engineering undergraduate curricula, 
the growing importance of bioprocessing within the chemi-
cal engineering mainstream means that membranes and their 
applications are gaining increasing attention. Most unit 
operations textbooks used in chemical engineering tend to 
give relatively little coverage of membrane processes in com-
parison with the more traditional separation techniques such 
as liquid-liquid extraction, adsorption, and distillation,[2, 3] 

although there are signs that this is changing somewhat.[4] For 
now, however, detailed coverage of membrane topics tends 
be found in specialized books and monographs.[1, 5, 6] While 
the growing number of textbooks devoted to biochemical 
or bioprocess engineering has begun to redress this balance 
somewhat,[7-9] it still has to be said that these textbooks tend 
to be less mathematical in their focus than traditional unit 
operations textbooks. The works by Ingham, et al.,[10] and 
Dunn, et al.,[11] represent a determination to extend math-
ematical modeling to all aspects of chemical and biochemical 
engineering but their focus is on dynamic problems where the 
mathematical problem is almost exclusively one of solving 
ordinary differential equations. The recent, excellent book by 
Cutlip and Shacham[12] gives hundreds of interesting and chal-
lenging computational problems for the chemical engineering 
student, presenting a wider range of mathematical challenges, 
including the solution of non-linear algebraic equations, but 
there are few problems on bioseparation processes such as ul-
trafiltration or chromatography. Thus, the chemical engineer-

ing undergraduate gets relatively little exposure to sufficiently 
challenging computational problems in the biologically based 
downstream processes.

In this paper, we present a variety of problems in the analy-
sis, design, and optimization of the industrially important 
unit operation of continuous feed and bleed ultrafiltration. 
The unifying concept in these problems is the solution of 
non-linear algebraic equations. We solve these using a vari-
ety of methods employing easily accessible spreadsheet and 
graphical tools. The problems described would be suitable for 
inclusion in a junior- or senior-level unit operations or separa-
tions module within a chemical engineering or similar degree 
program, as long as the students have some prior experience 
with numerical methods. A problem-based learning approach 
in which students solve these problems in class using a laptop 
computer is recommended.
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CONTINUOUS FEED AND BLEED 
ULTRAFILTRATION

We consider the example of continuous concentration of 
a protein solution by the feed and bleed mode illustrated in 
Figure 1. The protein is assumed to have a rejection coefficient 
of 1.0, i.e., no protein passes through the membrane. In the 
feed and bleed configuration, a portion of the product stream 
(retentate) is recycled back into the feed. This increases the 
mass transfer coefficient in the module, leading to higher 
permeate (filtrate) fluxes. Typically, the flowrate through the 
module greatly exceeds the inlet flowrate, Q0, and thus the 
system can reasonably be assumed to be well mixed, i.e., the 
retentate concentration is taken to be the same as the mean 
concentration in the module itself.[1] This is in contrast to 
single-pass operation where there is no recycle and the varia-
tion of concentration with distance along the membrane must 
be accounted for in the analysis.

In all our calculations, we assume that the gel polarization 
model applies, i.e., we assume that the membrane is operating 
at the limiting flux, given by[1]

J k
c
c
g= ln ( )1

where k is the mass transfer coefficient (assumed constant), cg 
is the limiting or “gel” concentration (constant), and c is the 
retentate concentration. The gel polarization model is a subset 
of concentration polarization theory in which the convective 
flux of solute towards the membrane is balanced by diffusion 
of solute from the membrane back into the bulk flow.[1] The 
key result of the concentration polarization analysis is that the 
flux is related to the solute concentration at the membrane. 
In general, this concentration is a function of transmembrane 
pressure, but at high pressures where the flux is constant and 
equal to its limiting value it can be assumed that the solute 
concentration at the membrane reaches a limiting value as 
well. This limiting concentration is denoted cg.

The solute balance for the system, assuming complete 
rejection, can be written

Q c Q c0 0 1 1 2= ( )

where Q0 is the feed volumetric flowrate, c0 is the feed con-
centration, c1 is the retentate concentration, and Q1 is the 
retentate flowrate. An overall balance gives

Q Q JA0 1 3= + ( )

where A is the membrane area. Combining Eqs. (1), (2), and 
(3) and using the perfect mixing assumption gives the follow-
ing governing equation of a single stage system

Q
kA

x x
c
c

g0
1 1

0

1 0 4−( )− − =ln ln ( )

where x1 = c0/c1.

This equation and its extension to multi-stage systems are 
simple but do not have any analytical solution. Given the 
range of computational tools readily available to students, 
however, there is no need to adopt trial-and-error solutions to 
this equation, even when extended to multi-stage systems, as 
has been done in the past.[1] Instead, rapid, reliable, and easily 
implemented numerical methods can be used that will not only 
give accurate answers to engineering problems but also provide 
the students with excellent opportunities to practice and apply 
what they have learned in their numerical method courses.

In the following sections we explore the solution of this 
equation for a variety of problem types and extend it to multi-
stage systems. Numerical examples are provided for each type 
of problem. Microsoft Excel is used throughout but other 
packages such as Matlab, Polymath,[12] or Mathematica[13] 
could just as easily have been used.

PROCESS ANALYSIS
Analysis of a Single Stage System

In this type of problem, it is assumed that the membrane 
area, the feed flowrate, the feed concentration, and the mass 
transfer coefficient are known and constant. The goal therefore 
is to calculate the exit concentration. A numerical example, 
illustrating semi-manual implementation within Excel of the 
Newton-Raphson algorithm, is shown in Example 1. 

Example 1
We consider a 1L/min feed of a protein solution that enters 
a single stage continuous feed and bleed ultrafiltration 
system. The feed enters at 10g/L and cg can be taken to 
be 300g/L. The mass transfer coefficient is 3.5 3 10-6 m/s 
and the area is 2.7m2. Use the Newton-Raphson method 
to compute the retentate concentration.
Using the numbers provided (and ensuring SI units in all 
cases), Eq. (4) becomes

1 764 1 3 401 01 1. . ln−( )− − =x x (Ex. 1.1)

The Newton-Raphson algorithm for solution of this equa-
tion can be written

x n x n
x n x n

1 1
1 11

1 764 1 3 401

1
+( )= ( )+

− ( )( )− − ( ). . ln

..764 1 1+ ( )x n

(Ex. 1.2)

Starting with an initial guess of x1 = 0.2, the method con-
verges (to three decimal places) after the third iteration 
to give x1 = 0.149 and hence c1 = 67g/L. The algorithm is 
easily implemented in Excel by inserting x1(0) in cell A1, 
the formula for x1(1) in cell B1, and copying this formula 
across the first row of the spreadsheet to complete as many 
iterations as desired.
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Analysis of a Multi-stage System—Numerical 
Solution

The extension of the previous analysis to multi-stage sys-
tems is simple and merely involves repeated application of the 
same basic technique. In a multi-stage system, the retentate 
from one stage forms the feed to the next. It is easy to show 
that the governing equation for stage i can be written

Q
kA

x x
c
c

xi l i
g

i
0

0

0 5− −( )− − =ln ln ( )

For a system with any arbitrary number of stages, N, the 
simplest way to solve these equations is to do them sequen-
tially as shown for a three-stage system in Example 2.
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Figure 1. Continuous feed and bleed ultrafiltration.

Example 2
In this example, 1L/min of a protein solution is fed to 
a three-stage continuous feed and bleed ultrafiltration 
system. The feed again enters at 10g/L and cg can be 
taken to be 300g/L. The mass transfer coefficient is 3.5 
3 10-6 m/s in each stage and the area of each stage is 
0.9m2, thus giving the same total area as Example 1. Use 
the Goalseek tool in Excel to compute the concentration 
leaving the third stage.
With the numbers supplied, Eq. (5) becomes for the first 
stage:

5 29 1 3 401 01 1. . ln−( )− − =x x (Ex. 2.1)

This equation can now be coded into any cell in Excel and 
the Goalseek tool employed. Putting a guess for x1 into 
cell A1, the following formula is coded into Cell B1:

=5.291*(1-A1) – 3.401 – LN(A1) 
The Goalseek tool is then accessed via the “What If” but-
ton in Excel 2007. To solve for x1, one simply sets cell 
B1 to value zero by changing cell A1.
Using a guess of x1 = 0.2, gives x1 = 0.491. The equation 
for the second stage thus becomes

5 291 0 491 3 401 02 2. . . ln−( )− − =x x (Ex. 2.2)

Solving gives x2 = 0.176 and thus the equation for the 
third stage becomes

5 291 0 176 3 401 03 3. . . ln−( )− − =x x (Ex. 2.3)

Solving as before gives x3 = 0.061. Therefore the exit 
concentration from the final stage is 164g/L, which is 
considerably greater than the 67g/L achieved with a 
single stage system of the same total area as found in the 
previous numerical example.

Analysis of a Multi-Stage System—Graphical 
Solution

It is clear from Example 2 that the availability of packages 
such as Excel makes solution of ultrafiltration problems rou-
tine and accessible to undergraduate students. The use of a 
purely numerical approach can leave the student somewhat 
disconnected from the physics of a problem, however. Graphi-
cal techniques have a long history in chemical engineering and 
while they are somewhat obsolete as purely computational 
devices, they retain considerable utility as pedagogical tools. 
In this section, we demonstrate a simple graphical technique 
for the solution of multi-stage problems that not only allows 
one to rapidly solve such problems without the aid of a com-
puter, but also helps to explain the operation of the system in 
a language familiar to chemical engineering students. To start, 
we let x represent c0/c where c is the exit concentration from 
an arbitrary stage. For the first stage our governing equations 
can thus be written

J k
c
c

k xg= +ln ln ( )
0

6

J
Q
A

x= −( )0 1 7( )

Eq. (6) is somewhat analogous to the equilibrium curve 
typically encountered in equilibrium stage operations such as 
distillation, liquid-liquid extraction, and absorption. Eq. (7) 
represents a straight line and can thus be thought of as the op-
erating line of the module. Thus, feed and bleed ultrafiltration 
can actually be described with much of the same language, and 
using many of the same methods, as the more conventional 
unit operations well known to chemical engineers.
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Eq. (7), the operating line, has an 
x-axis intercept of 1.0 and a y-axis 
intercept of Q0/A. The concentration 
leaving this stage, i.e., x1, can be 
found as the point of intersection 
of the flux curve (analogous to an 
equilibrium curve), i.e., Eq. (6), and 
the operating line. The value of this 
approach is the ease with which it 
can be extended to multi-stage sys-
tems. Carrying out a similar analysis 
for the second stage, we can write 
the following expression for the flux 
in the second stage

J
Q
A

x x= −( )0
1 8( )

where we have assumed equal areas. 
Assuming the mass transfer coef-
ficient is unchanged in the second 
stage, Eq. (6) can be applied as 
before. Now, Eq. (8) is a straight line with x-intercept = x1 
and y-intercept = Q0x1/A. Clearly, therefore, Eqs. (7) and (8) 
represent parallel lines and the concentration from the second 
stage can be evaluated precisely, as done for the first stage. 
A numerical example for three stages of equal area is shown 
in Example 3.

DESIGN OF CONTINUOUS UF SYSTEM
In this type of problem, the exit concentration is specified 

and the mass transfer coefficient is assumed to be known. For 
a single-stage system, therefore, Eq. (4) becomes

A
Q x k

c c xg

=
−( )

( )+
0 1

0 1

1
9

ln ln
( )

In this case, calculation of the required area is trivial. As 
shown below, however, calculation of the required area for a 
multistage system is a bit more involved.
Design of a Multi-Stage System With Equal Areas

Using the same notation as in the section entitled “Analysis 
of a Multi-Stage System—Numerical Solution,” we see that 
the problem now is to solve the N equations described by Eq. 
(5) but here the unknowns are the xi for 1 ≤  i ≤  N-1 and A, 
the area of each stage. Because the area can be eliminated by 
rearranging of any one of the equations, however, the system 
can be reduced to N-1 equations for the intermediate compo-
sitions. Nevertheless, unlike the analysis problem described 
earlier where the equations can be solved sequentially, the 
design problem requires simultaneous solution of the equa-
tions. A numerical example, employing the Solver tool in 
Excel, is given in Example 4 for a three-stage system.
Optimization of Multi-Stage Systems

In the last section, we showed how the use of a multi-stage 
system is superior to a single-stage system. There is no rea-
son, however, why the area in each stage should be the same, 
although in practice using equal areas is probably the most 
likely choice given the limited range of membrane modules 
produced by manufacturers. For a system with N stages, the 
goal, therefore, is to find the values of xi that minimize the 
total area, At for fixed xN where

A A
Q
k

x x

c c xt i
i

N
i i

g ii

N

= =
−( )

( )+=

−

=
∑ ∑

1

0 1

01

1
ln ln

( 00)

and x0 =1. The optimum is found by applying the N-1 
conditions.

Example 3
Here we repeat Example 2 but use the graphical approach 
described above.
For this problem, Eq. (6) becomes

J x= × + ×− −1 19 10 3 5 105 6. . ln (Ex. 3.1)

From Eq. (7) the operating line for the first membrane 
is

J x= × −( )−1 85 10 15. (Ex. 3.2)

Plotting these two expressions leads directly to the con-
struction in Figure 2 and x3 can be rapidly computed. From 
the graph we find c3 = c0/0.06 = 167g/L in close agreement 
with the numerical solution obtained previously. 
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Figure 2. Graphical construction for multi-stage system.
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Rearranging in each case gives
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In principle, therefore, the values of the xi that lead to a minimum area are found by simultaneous solution of the N-1 equa-
tions represented by Eq. (12). It is worth noting, however, that in the limit where (1-xi) →  0, this expression can be simplified 

somewhat. In that case, we can use appropriate Taylor series 
expansions (ln(x) ≈  x – 1 and 1/x ≈  2 – x) and neglecting 
all second order terms, we find

x x xi i i= − +1 1 13( )

which implies

c
c

c
c

i

i

i

i

+

−

=1

1

14( )

which is the relation due to Rautenbach and Albrecht.[4] In 
Example 5 (next page), we find the exact optimum area for 
a three-stage system, compare it with the Rautenbach and 
Albrecht approximation, and with the result obtained previ-
ously for a three-stage, equal area system.

CONCLUSIONS
Continuous feed and bleed ultrafiltration is a conceptu-

ally simple unit operation but the logarithmic dependence 
of the permeate flux on concentration leads to non-linear 
algebraic equations, even for the simplest process situations. 
With modern software and with simple graphical methods, 
however, these equations can be solved quite easily and there 
is no reason why they should not be covered as an integral 
part of an undergraduate module in bioseparation processes. 
Furthermore, there is plenty of scope here for even more 
challenging problems using more complex models for the 
permeate flux.

Example 4
In this example, 1L/min of a protein solution is fed to a 
three-stage, equal area, continuous feed and bleed ultra-
filtration system. The feed enters at 10g/L and cg can be 
taken to be 300g/L. The mass transfer coefficient is 3.5 3 
10-6 m/s in each stage and retentate concentration leaving 
the third stage is 100g/L. The objective is to use the Solver 
tool to compute the area of each stage.
Applying Eq. (5) and using the relevant numbers (includ-
ing x3 = 0.1) gives the following equations to be solved

4 762 1 3 401 01 1

. . ln
A

x x−( )− − = (Ex. 4.1)

4 762 3 401 01 2 2

. . ln
A

x x x−( )− − = (Ex. 4.2)

4 762 0 1 1 098 02

. . .
A

x −( )− = (Ex. 4.3)

These equations were solved with initial estimates of x1 = 
0.5, x2 = 0.2, and A = 1m2. The equations were coded into 
Excel as shown below in Table 1 and Solver was set the 
target of setting cell B1 to be zero by changing cells A1 
to A3, subject to the constraints B2 = 0 and B3 = 0.
Solver converged successfully giving A = 0.713m2, x1 = 
0.574, and x2 = 0.264. Thus, the total area required is 3 
3 0.713 = 2.139m2. It would be a useful student exercise 
to compare the area required if a single stage system 
had been used. Applying Eq. (9) should give an area of 
3.902m2, thus showing the advantage of the multi-stage 
system.
As mentioned above, this system of three equations could 
have been reduced to two equations by eliminating A from 
any one of the equations, thus giving two equations that 
can also be solved with Solver. Again, this would be a 
useful student exercise.

TABLE 1
Excel Code for Solving System of Algebraic Equations

Column A 
(Guess) 

Column B 
(Formula)

0.5 =4.762/A3*(1-A1) – 3.401 – ln(A1)

0.2 =4.762/A3*(A1-A2) – 3.401 – ln(A2)

1 =4.762/A3*(A2-0.1) – 1.098
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Example 5
Again we have 1 L/min of a protein solution fed to a three-stage continu-
ous feed and bleed ultrafiltration system. The feed enters at 10g/L and 
cg can be taken to be 300g/L. The mass transfer coefficient is 3.5 3 10-6 
m/s in each stage. The objective is to find the minimum area required 
to achieve a concentration of 100g/L in the third stage.
The unknowns in this problem are x1 and x2 (recall that x3 = 0.1) and 
Eq. (12) can be written after a little rearranging as

3 401 3 401 1 1 32 1
1

. ln . ln+( ) + + −
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0( ) = Ex. 5.2

Excel Solver was set with the target of satisfying the first equation while 
the second equation was made a constraint. The initial guesses were x1 
= 0.5 and x2 = 0.2. Convergence was achieved giving x1 = 0.465 and x2 
= 0.209. Thus, from Eq. (10), the areas of the three stages are 0.967m2, 
0.664m2, and 0.473m2, respectively, giving a total area of 2.103m2. This 
compares with 2.139m2 in the previous example where equal areas were 
used. Thus the benefits of using an optimized system rather than using 
a more convenient equal area system are small indeed.
It is a useful student exercise to compare the exact result found here with 
the Rautenbach andAlbrecht approximation, Eq. (13). Students should 
find x x1 3

1 3 0 464= =/ .  and x x2 3
2 3 0 215= =/ . , both of which have values 

that are very close to the exact answer.


