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Itrafiltration for the concentration and purification of

macromolecular solutions is an increasingly impor-

tant unit operation especially in the bioprocessing
industries."! While it has traditionally formed only a minor
part of many chemical engineering undergraduate curricula,
the growing importance of bioprocessing within the chemi-
cal engineering mainstream means that membranes and their
applications are gaining increasing attention. Most unit
operations textbooks used in chemical engineering tend to
give relatively little coverage of membrane processes in com-
parison with the more traditional separation techniques such
as liquid-liquid extraction, adsorption, and distillation,* *
although there are signs that this is changing somewhat.”! For
now, however, detailed coverage of membrane topics tends
be found in specialized books and monographs.!'->- " While
the growing number of textbooks devoted to biochemical
or bioprocess engineering has begun to redress this balance
somewhat .1 it still has to be said that these textbooks tend
to be less mathematical in their focus than traditional unit
operations textbooks. The works by Ingham, et al."® and
Dunn, et al.,'" represent a determination to extend math-
ematical modeling to all aspects of chemical and biochemical
engineering but their focus is on dynamic problems where the
mathematical problem is almost exclusively one of solving
ordinary differential equations. The recent, excellent book by
Cutlip and Shacham™? gives hundreds of interesting and chal-
lenging computational problems for the chemical engineering
student, presenting a wider range of mathematical challenges,
including the solution of non-linear algebraic equations, but
there are few problems on bioseparation processes such as ul-
trafiltration or chromatography. Thus, the chemical engineer-
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ing undergraduate gets relatively little exposure to sufficiently
challenging computational problems in the biologically based
downstream processes.

In this paper, we present a variety of problems in the analy-
sis, design, and optimization of the industrially important
unit operation of continuous feed and bleed ultrafiltration.
The unifying concept in these problems is the solution of
non-linear algebraic equations. We solve these using a vari-
ety of methods employing easily accessible spreadsheet and
graphical tools. The problems described would be suitable for
inclusion in a junior- or senior-level unit operations or separa-
tions module within a chemical engineering or similar degree
program, as long as the students have some prior experience
with numerical methods. A problem-based learning approach
in which students solve these problems in class using a laptop
computer is recommended.

Greg Foley is a chemical engineer with B.E.
and Ph.D. degrees from University College
Dublin, Ireland, and an M.S. degree in chemi-
cal engineering from Cornell University. He has
taught many aspects of chemical engineering
to students of biotechnology at Dublin City
University for more than 24 years. His main
area of expertise and the focus of his re-
search is in membrane processing, especially
crossflow microfiltration of microbial cells and
the modeling of ultrafiltration and diafitration
processes. He also has an active interest in
teaching innovation and has developed numerous initiatives in this area
including the use of video podcasting and problem-based learning. He
is particularly interested in the interface between teaching and research
and the incorporation of research problems into the undergraduate cur-
riculum is one of his ongoing projects.
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CONTINUOUS FEED AND BLEED
ULTRAFILTRATION

We consider the example of continuous concentration of
a protein solution by the feed and bleed mode illustrated in
Figure 1. The protein is assumed to have a rejection coefficient
of 1.0, i.e., no protein passes through the membrane. In the
feed and bleed configuration, a portion of the product stream
(retentate) is recycled back into the feed. This increases the
mass transfer coefficient in the module, leading to higher
permeate (filtrate) fluxes. Typically, the flowrate through the
module greatly exceeds the inlet flowrate, Q,, and thus the
system can reasonably be assumed to be well mixed, i.e., the
retentate concentration is taken to be the same as the mean
concentration in the module itself."! This is in contrast to
single-pass operation where there is no recycle and the varia-
tion of concentration with distance along the membrane must
be accounted for in the analysis.

In all our calculations, we assume that the gel polarization
model applies, i.e., we assume that the membrane is operating
at the limiting flux, given by!!!

I= klnc—g )
c

where k is the mass transfer coefficient (assumed constant), ¢,
is the limiting or “gel” concentration (constant), and c is the
retentate concentration. The gel polarization model is a subset
of concentration polarization theory in which the convective
flux of solute towards the membrane is balanced by diffusion
of solute from the membrane back into the bulk flow.!"! The
key result of the concentration polarization analysis is that the
flux is related to the solute concentration at the membrane.
In general, this concentration is a function of transmembrane
pressure, but at high pressures where the flux is constant and
equal to its limiting value it can be assumed that the solute
concentration at the membrane reaches a limiting value as
well. This limiting concentration is denoted C,

The solute balance for the system, assuming complete
rejection, can be written

o€ = R& (2

where Q, is the feed volumetric flowrate, c, is the feed con-
centration, ¢ 1 is the retentate concentration, and Q, is the
retentate flowrate. An overall balance gives

Q,=Q,+JA 3

where A is the membrane area. Combining Eqgs. (1), (2), and
(3) and using the perfect mixing assumption gives the follow-
ing governing equation of a single stage system

Q

H(1—x1)—1nxl—1nc—g:0 (4)

S

where X, = co/cl.
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This equation and its extension to multi-stage systems are
simple but do not have any analytical solution. Given the
range of computational tools readily available to students,
however, there is no need to adopt trial-and-error solutions to
this equation, even when extended to multi-stage systems, as
has been done in the past."! Instead, rapid, reliable, and easily
implemented numerical methods can be used that will not only
give accurate answers to engineering problems but also provide
the students with excellent opportunities to practice and apply
what they have learned in their numerical method courses.

In the following sections we explore the solution of this
equation for a variety of problem types and extend it to multi-
stage systems. Numerical examples are provided for each type
of problem. Microsoft Excel is used throughout but other
packages such as Matlab, Polymath,'? or Mathematical'¥!
could just as easily have been used.

PROCESS ANALYSIS
Analysis of a Single Stage System

In this type of problem, it is assumed that the membrane
area, the feed flowrate, the feed concentration, and the mass
transfer coefficient are known and constant. The goal therefore
is to calculate the exit concentration. A numerical example,
illustrating semi-manual implementation within Excel of the
Newton-Raphson algorithm, is shown in Example 1.

/Example 1 )

We consider a 1L/min feed of a protein solution that enters
a single stage continuous feed and bleed ultrafiltration
system. The feed enters at 10g/L and ¢, can be taken to
be 300g/L. The mass transfer coefficient is 3.5 X 10 m/s
and the area is 2.7m?. Use the Newton-Raphson method
to compute the retentate concentration.

Using the numbers provided (and ensuring SI units in all
cases), Eq. (4) becomes

1.764(1—x,)—3.401—Inx =0 (Ex. 1.1)

The Newton-Raphson algorithm for solution of this equa-
tion can be written

1764(1-x, (n)) —3.401— Inx ()
1764+ 1/x,(n)

x1<n+l):xl(n)+

(Ex. 1.2)

Starting with an initial guess of x, =0.2, the method con-
verges (to three decimal places) after the third iteration
to give x, =0.149 and hence ¢, = 67g/L. The algorithm is
easily implemented in Excel by inserting x,(0) in cell A1,
the formula for x,(1) in cell B1, and copying this formula
across the first row of the spreadsheet to complete as many
iterations as desired.

. J
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Analysis of a Multi-stage System—Numerical
Solution

The extension of the previous analysis to multi-stage sys-
tems is simple and merely involves repeated application of the
same basic technique. In a multi-stage system, the retentate
from one stage forms the feed to the next. It is easy to show
that the governing equation for stage i can be written

Q C
ﬁf(xi_l—xi)—lnc—g—lnxi =0 )

0

For a system with any arbitrary number of stages, N, the
simplest way to solve these equations is to do them sequen-
tially as shown for a three-stage system in Example 2.

4 )
Example 2
In this example, 1L/min of a protein solution is fed to
a three-stage continuous feed and bleed ultrafiltration
system. The feed again enters at 10g/L. and ¢, can be
taken to be 300g/L. The mass transfer coefficient is 3.5
X 10 m/s in each stage and the area of each stage is
0.9m?, thus giving the same total area as Example 1. Use
the Goalseek tool in Excel to compute the concentration
leaving the third stage.

With the numbers supplied, Eq. (5) becomes for the first
stage:

5.29(1-x,)—3.401—Inx =0 (Ex. 2.1)
This equation can now be coded into any cell in Excel and
the Goalseek tool employed. Putting a guess for x, into
cell A1, the following formula is coded into Cell B1:

=5.291*(1-A1) —3.401 — LN(A1)
The Goalseek tool is then accessed via the “What If”” but-

ton in Excel 2007. To solve for x , one simply sets cell
B1 to value zero by changing cell Al.

Using a guess of x, = 0.2, gives x, = 0.491. The equation
for the second stage thus becomes

5.291(0.491—-x, ) —3.401—Inx, =0 (Ex. 2.2)

Solving gives x, = 0.176 and thus the equation for the
third stage becomes

5.291(0.176 — x, ) —3.401—Inx, = 0 (Ex. 2.3)

Solving as before gives x, = 0.061. Therefore the exit
concentration from the final stage is 164g/L, which is
considerably greater than the 67g/L achieved with a
single stage system of the same total area as found in the
previous numerical example.

. J
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Analysis of a Multi-Stage System—Graphical
Solution

It is clear from Example 2 that the availability of packages
such as Excel makes solution of ultrafiltration problems rou-
tine and accessible to undergraduate students. The use of a
purely numerical approach can leave the student somewhat
disconnected from the physics of a problem, however. Graphi-
cal techniques have a long history in chemical engineering and
while they are somewhat obsolete as purely computational
devices, they retain considerable utility as pedagogical tools.
In this section, we demonstrate a simple graphical technique
for the solution of multi-stage problems that not only allows
one to rapidly solve such problems without the aid of a com-
puter, but also helps to explain the operation of the system in
alanguage familiar to chemical engineering students. To start,
we let x represent ¢ /c where ¢ is the exit concentration from
an arbitrary stage. For the first stage our governing equations
can thus be written

J:klnc—g+klnx (6)
CO
Q
J:X(l—x) (7

Eq. (6) is somewhat analogous to the equilibrium curve
typically encountered in equilibrium stage operations such as
distillation, liquid-liquid extraction, and absorption. Eq. (7)
represents a straight line and can thus be thought of as the op-
erating line of the module. Thus, feed and bleed ultrafiltration
can actually be described with much of the same language, and
using many of the same methods, as the more conventional
unit operations well known to chemical engineers.

C1 Q

JA

La e

Qo

Figure 1. Continuous feed and bleed ultrafiltration.
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Eq. (7), the operating line, has an 5 065

x-axis intercept of 1.0 and a y-axis
intercept of Q /A. The concentration
leaving this stage, i.e., X,, can be
found as the point of intersection
of the flux curve (analogous to an
equilibrium curve), i.e., Eq. (6),and
the operating line. The value of this
approach is the ease with which it
can be extended to multi-stage sys-
tems. Carrying out a similar analysis
for the second stage, we can write
the following expression for the flux
in the second stage

Q

1.5e-5 A

1.0e-5 4

J (m/s)

5.0e-6 A

JZx(’(l—X) (®) 0.0 - L

where we have assumed equal areas.
Assuming the mass transfer coef-

0.2 0.4 0.6 0.8 1.0

X

ficient is unchanged in the second
stage, Eq. (6) can be applied as
before. Now, Eq. (8) is a straight line with x-intercept = x,
and y-intercept = Q x,/A. Clearly, therefore, Eqs. (7) and (8)
represent parallel lines and the concentration from the second
stage can be evaluated precisely, as done for the first stage.
A numerical example for three stages of equal area is shown
in Example 3.

\
Example 3

Here we repeat Example 2 but use the graphical approach
described above.

For this problem, Eq. (6) becomes

J=1.19x10"°+3.5x10 " Inx (Ex. 3.1)

From Eq. (7) the operating line for the first membrane
is

T=185x10"(1-x) (Ex. 3.2)
Plotting these two expressions leads directly to the con-
struction in Figure 2 and x, can be rapidly computed. From
the graph we find ¢, = ¢ /0.06 = 167g/L in close agreement
with the numerical solution obtained previously. )

DESIGN OF CONTINUOUS UF SYSTEM

In this type of problem, the exit concentration is specified
and the mass transfer coefficient is assumed to be known. For
a single-stage system, therefore, Eq. (4) becomes

Q,(1-x,)/k

A= ln(cg/co)+lnx1

©))
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Figure 2. Graphical construction for multi-stage system.

In this case, calculation of the required area is trivial. As
shown below, however, calculation of the required area for a
multistage system is a bit more involved.

Design of a Multi-Stage System With Equal Areas

Using the same notation as in the section entitled “Analysis
of a Multi-Stage System—Numerical Solution,” we see that
the problem now is to solve the N equations described by Eq.
(5) but here the unknowns are the x, for 1 < i< N-landA,
the area of each stage. Because the area can be eliminated by
rearranging of any one of the equations, however, the system
can be reduced to N-1 equations for the intermediate compo-
sitions. Nevertheless, unlike the analysis problem described
earlier where the equations can be solved sequentially, the
design problem requires simultaneous solution of the equa-
tions. A numerical example, employing the Solver tool in
Excel, is given in Example 4 for a three-stage system.

Optimization of Multi-Stage Systems
In the last section, we showed how the use of a multi-stage
system is superior to a single-stage system. There is no rea-
son, however, why the area in each stage should be the same,
although in practice using equal areas is probably the most
likely choice given the limited range of membrane modules
produced by manufacturers. For a system with N stages, the
goal, therefore, is to find the values of X, that minimize the
total area, A for fixed X, where
(XH B Xi)
. _ (10)
o1 k ‘5 III(Cg/CO)-‘rIIIXi
and X, =1. The optimum is found by applying the N-1
conditions.
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1n(cg/c0)~&—lnxi + X -1

oA _ . — 0forl<i<N-—1 (1)
0x; X (ln(cg/co)—klnxi) ln(cg/co)+lnxi+1
Rearranging in each case gives
2
e (1n(cg/co)+lnxi) —ln& 12)

ln(cg/co)—i—lnxi +%—1

C

1

In principle, therefore, the values of the x, that lead to a minimum area are found by simultaneous solution of the N-1 equa-
tions represented by Eq. (12). It is worth noting, however, that in the limit where (1-x,) — 0, this expression can be simplified

/
Example 4 )

In this example, 1L/min of a protein solution is fed to a
three-stage, equal area, continuous feed and bleed ultra-
filtration system. The feed enters at 10g/L and ¢, can be
taken to be 300g/L. The mass transfer coefficient is 3.5 X
109 m/s in each stage and retentate concentration leaving
the third stage is 100g/L. The objective is to use the Solver
tool to compute the area of each stage.

Applying Eq. (5) and using the relevant numbers (includ-
ing x,=0.1) gives the following equations to be solved

4.762

T(lfxl>f3.40171nxl =0 (Ex. 4.1)
%(x1 —x,)—3401-Inx, =0 (Ex. 4.2)
ﬂ(x2 —0.1)—1.098 =0 (Ex. 4.3)

These equations were solved with initial estimates of x, =
0.5,x,=02,and A= 1m?. The equations were coded into
Excel as shown below in Table 1 and Solver was set the
target of setting cell B1 to be zero by changing cells Al
to A3, subject to the constraints B2 =0 and B3 = 0.

Solver converged successfully giving A =0.713m?, x, =
0.574, and x, = 0.264. Thus, the total area required is 3
X 0.713 =2.139m?. It would be a useful student exercise
to compare the area required if a single stage system
had been used. Applying Eq. (9) should give an area of
3.902m?, thus showing the advantage of the multi-stage
system.

As mentioned above, this system of three equations could
have been reduced to two equations by eliminating A from
any one of the equations, thus giving two equations that
can also be solved with Solver. Again, this would be a

useful student exercise.
. J
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somewhat. In that case, we can use appropriate Taylor series
expansions (In(x) ~ x —1 and 1/x &~ 2 — x) and neglecting
all second order terms, we find

X = XX 13)

which implies
C. )
2 R (14)

which is the relation due to Rautenbach and Albrecht.* In
Example 5 (next page), we find the exact optimum area for
a three-stage system, compare it with the Rautenbach and
Albrecht approximation, and with the result obtained previ-
ously for a three-stage, equal area system.

CONCLUSIONS

Continuous feed and bleed ultrafiltration is a conceptu-
ally simple unit operation but the logarithmic dependence
of the permeate flux on concentration leads to non-linear
algebraic equations, even for the simplest process situations.
With modern software and with simple graphical methods,
however, these equations can be solved quite easily and there
is no reason why they should not be covered as an integral
part of an undergraduate module in bioseparation processes.
Furthermore, there is plenty of scope here for even more
challenging problems using more complex models for the
permeate flux.

TABLE 1
Excel Code for Solving System of Algebraic Equations
Column A Column B
(Guess) (Formula)
05 =4.762/A3%(1-A1) — 3.401 — In(A1)
0.2 =4.762/A3*%(A1-A2) — 3.401 — In(A2)
1 =4.762/A3%(A2-0.1) — 1.098
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Again we have 1 L/min of a protein solution fed to a three-stage continu-
ous feed and bleed ultrafiltration system. The feed enters at 10g/L and
¢, can be taken to be 300g/L. The mass transfer coefficient is 3.5 X 10¢
m/s in each stage. The objective is to find the minimum area required
to achieve a concentration of 100g/L in the third stage.

/Example 5

The unknowns in this problem are x, and x, (recall that x, = 0.1) and
Eq. (12) can be written after a little rearranging as

(3.401+1Inx,) 34014 Inx, + 1 ~(3.401+Inx,) =0 (Ex. 5.1)
X

1

1.098[3.401 4 Inx, + - —1|—(3.401 + Inx,)’ =0 (Ex.5.2)
X

2

Excel Solver was set with the target of satisfying the first equation while
the second equation was made a constraint. The initial guesses were x,
=0.5 and x, =0.2. Convergence was achieved giving x, =0.465 and x,
=0.209. Thus, from Eq. (10), the areas of the three stages are 0.967m?,
0.664m?, and 0.473m?, respectively, giving a total area of 2.103m?. This
compares with 2.139m? in the previous example where equal areas were
used. Thus the benefits of using an optimized system rather than using
a more convenient equal area system are small indeed.

It is a useful student exercise to compare the exact result found here with
the Rautenbach andAlbrecht approximation, Eq. (13). Students should
find x, =’ =0.464 and x, =x;° = 0.215,both of which have values

that are very close to the exact answer.

J
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